
Automata Theory and
Dynamic Programming

Ivan Papusha
Postdoctoral Fellow

Institute for Computational Engineering and Sciences
University of Texas at Austin

2

A Synthesis Problem

Automatically synthesize a control protocol that
• manages the system behavior and
• is provably correct with respect to the specifications and optimal.

Given:

• System model
-both continuous & discrete evolution
-actuation limitations
-modeling uncertainties & disturbances

ẋ = f(x, u, �)
g(x, u) � 0

* Note: The southern 6
waypoints in the Parking
Lot (Zone 14) are
Checkpoints 12 17

4-way Stop

Parking Lot*

Traffic
Circle

2

8

1

117

6 4

5

9

10

3

1

2

3 4

6 7

8
9

10

11

13

12

5

14

Waypoint

Lane
Zone
Stop Sign

Segment / Zone ID

Checkpoint ID

Sample RNDF

1

1

v1.0

N

• Specifications
-high-level requirements
-optimality criteria

Ivan Papusha

Outline

1. Abstraction-based synthesis 
 

2. Approximate Dynamic Programming  
 

3. Learning from expert demonstrations

3

Detour: Specifying Behavior with Temporal Logic

4

⌃ (eventually)
⇤ (always)
U (until)

Propositional
Logic

+
Temporal
Operators

⇤ (and)

⌅ (or)

⇥ (implies)

¬ (not)

� (eventually)

⇤ (always)

U (until)

(only a dialect in a large family of languages)

Detour: Specifying Behavior with Temporal Logic

4

⌃ (eventually)
⇤ (always)
U (until)

Propositional
Logic

+
Temporal
Operators

⇤ (and)

⌅ (or)

⇥ (implies)

¬ (not)

� (eventually)

⇤ (always)

U (until)

Traffic rules:
• No collision
• Obey speed limits
• Stay in travel lane unless blocked
• Intersection precedence & merging, stop line, passing,...

⇤ (dist(x,Obs) � Xsafe ^ dist(x,Loc(Veh)) � Xsafe)

⇤ ((x 2 Reduced Speed Zone) ! (v vreduced))

position : x

Reduced Speed Zone ck pt

Goals:
• Eventually visit the check point
• Every time check point is reached, eventually come to start

⌃(x = ck pt)

⇤((x = ck pt) ! ⌃(x = start))

* Note: The southern 6
waypoints in the Parking
Lot (Zone 14) are
Checkpoints 12 17

4-way Stop

Parking Lot*

Traffic
Circle

2

8

1

117

6 4

5

9

10

3

1

2

3 4

6 7

8
9

10

11

13

12

5

14

Waypoint

Lane
Zone
Stop Sign

Segment / Zone ID

Checkpoint ID

Sample RNDF

1

1

v1.0

N

(only a dialect in a large family of languages)

Detour: Specifying Behavior with Temporal Logic

4

⌃ (eventually)
⇤ (always)
U (until)

Propositional
Logic

+
Temporal
Operators

⇤ (and)

⌅ (or)

⇥ (implies)

¬ (not)

� (eventually)

⇤ (always)

U (until)

Traffic rules:
• No collision
• Obey speed limits
• Stay in travel lane unless blocked
• Intersection precedence & merging, stop line, passing,...

⇤ (dist(x,Obs) � Xsafe ^ dist(x,Loc(Veh)) � Xsafe)

⇤ ((x 2 Reduced Speed Zone) ! (v vreduced))

position : x

Reduced Speed Zone ck pt

Goals:
• Eventually visit the check point
• Every time check point is reached, eventually come to start

⌃(x = ck pt)

⇤((x = ck pt) ! ⌃(x = start))

* Note: The southern 6
waypoints in the Parking
Lot (Zone 14) are
Checkpoints 12 17

4-way Stop

Parking Lot*

Traffic
Circle

2

8

1

117

6 4

5

9

10

3

1

2

3 4

6 7

8
9

10

11

13

12

5

14

Waypoint

Lane
Zone
Stop Sign

Segment / Zone ID

Checkpoint ID

Sample RNDF

1

1

v1.0

N

(only a dialect in a large family of languages)

5

A widely explored approach

5

A widely explored approach

short-
horizon
specifications

long-
horizon
specifications

constraints on
continuous
state + input

Control protocolMulti-scale modelsDifferent views Synthesis method

5

A widely explored approach

short-
horizon
specifications

long-
horizon
specifications

constraints on
continuous
state + input

Control protocolMulti-scale modelsDifferent views Synthesis method

Iterative
graph search

Two-player,
turn-based

graph game

Constrained,
finite-horizon

optimal control

5

A widely explored approach

short-
horizon
specifications

long-
horizon
specifications

constraints on
continuous
state + input

Control protocolMulti-scale modelsDifferent views Synthesis method

Iterative
graph search

Two-player,
turn-based

graph game

Constrained,
finite-horizon

optimal control

(Finite-state) abstraction with “simulation” relation

Abstraction with “simulation” relation

6

Finite-state abstraction with “simulation” relations

Every discrete transition can be “executed”
under the continuous dynamics

6

Finite-state abstraction with “simulation” relations

X

Every discrete transition can be “executed”
under the continuous dynamics

6

Finite-state abstraction with “simulation” relations

X

Every discrete transition can be “executed”
under the continuous dynamics

6

Finite-state abstraction with “simulation” relations

X

Every discrete transition can be “executed”
under the continuous dynamics

6

Finite-state abstraction with “simulation” relations

X

Every discrete transition can be “executed”
under the continuous dynamics

Xinitial

Xtarget

?

6

Finite-state abstraction with “simulation” relations

X

Every discrete transition can be “executed”
under the continuous dynamics

Xinitial

Xtarget

?

4) To make sure that the stay-in-lane requirement (see

below) is achievable, we assume that an obstacle on

the right lane does not disappear while the vehicle is in

its vicinity. That is, for any ! ∈ {1, . . . , $},

□

⎛

⎝

⎛

⎝% ∈
!+1∪

"=!−1

&#," ∧ '!,1

⎞

⎠ =⇒ □('!,1)

⎞

⎠

(14)

These assumptions can be relaxed so that they have the form

(5) by replacing the inner □ in (11) and (14) with !.
Next, we define the desired safety property, □(%, as the

conjunction of the following properties:

1) No collision, i.e., for any ! ∈ {1, . . . , $} and) ∈ {1, 2},
□('!," =⇒ ¬(% ∈ &#,! ∧ * ∈ &&,")) (15)

2) The vehicle stays in the right lane unless there is

an obstacle blocking the lane. That is, for any ! ∈
{1, . . . , $},

□((¬'!,1 ∧ % ∈ &#,!) =⇒ (* ∈ &&,1)) (16)

Finally, we define (' = (% ∈ &#,(), i.e., we want to
ensure that eventually the vehicle gets to the end of the road.

B. State Space Discretization

Since the dynamics and the constraints on the control

efforts for the % and * components of the vehicle state are
decoupled, we apply the discretization algorithm presented

in Section IV for the % and * components separately for
the sake of computational efficiency.4 Since the vehicle

dynamics (7) are translationally invariant, we can use similar

partitions for all &),!. The discretization algorithm with

horizon length + = 10 and Volmin = 0.1 yields a partition
with 11 cells {&1

),!, &
2
),!, . . . , &

11
),!} for each &),! as shown

in Fig. 3. For each ! ∈ {,-!. + 1, . . . , ,-/%} and) ∈
{1, . . . , 11}, we let '"

),! be the state label of cell &
"
),! and

let '),! = {'1
),!, . . . , '11

),!}. A discrete state is therefore a

tuple (0#, 0&, '1,1, . . . , '(,2) where (0#, 0&) ∈ '#,!×'&,! is
the discrete controlled state. Using MPT [4], the reachability

between discrete controlled states can be determined and a

controller associated with each reachable pair of them can be

generated such that the resulting continuous execution imple-

ments the discrete transition between them. The specification

of the resulting finite transition system can then be derived

as discussed in Section IV-C.

i!1 i
!1

0

1

z

v z

Fig. 3. The partition of each cell !!,# in the original partition of
the domain !!

4Before performing the discretization, we partition each !!,# into(
!+

!,# ∪ !−
!,#

)
where !+

!,# = [" − 1, "] × [0, 1] and !−
!,# = [" − 1, "] ×

[−1, 0] to allow the possibility of enforcing other traffic laws such as
disallowing reverse motion of the vehicle.

C. Receding Horizon Formulation

Based on the new partition of the vehicle state space,

there are the total of 242 × $ discrete vehicle states and

22×(discrete environment states. Thus, in the worst case,

the resulting automaton may have as many as 242×$×22×(

nodes. To avoid state explosion, we apply the receding

horizon strategy proposed in Section V. The partial order

structure is defined as)! = {(0#, 0&, '1,1, . . . , '(,2) ∣ 0# ∈
'#,(−!} and)! ≺*!)" for any ! <).
Next, we follow the scheme in Remark 4 to find an

invariant Φ. Starting with Φ = True, we iteratively add, until
Ψ! as defined in (6) is realizable, a propositional formula to

exclude the initial states starting from which there exists a

set of moves of the environment such that the system cannot

satisfy Ψ!. A close examination of the resulting Φ reveals

that Φ is essentially the conjunction of the following logics:

1) To ensure the progress property "(', we need to

assume that 0# ∕∈ -+,-./+% and 0& ∕∈ .+,-./+% where

/notrans is defined as: for any 0) ∈ /notrans , ! ∈
{,-!.+1, . . . , ,-/%} and) ∈ {1, . . . , 11}, 0) ∕⇝ '"

),!
and / represent either - or . .

2) To ensure no collision, the vehicle cannot collide with

an obstacle at the initial state.

3) Suppose 0# ∈ '#,!. To ensure no collision, if 0& can
only transition to 0 ′

& ∈ '&,1, then either '!,1 or '!+1,1 is

False. Similarly, if 0& can only transition to 0 ′
& ∈ '&,2,

then either '!,2 or '!+1,2 is False. Similar reasoning
can be derived for the case where 0# ∈ '#,! such that
it can only transition to 0 ′

∈ '#,!+1 and for the case

where it can only transition to 0 ′
∈ '#,!.

4) To ensure the stay-in-lane property, the vehicle cannot

be in the left lane unless there is an obstacle blocking

the right lane at the initial state. In addition, the vehicle

is never in the state (0#, 0&) ∈ '#,! × '&,1 which can
only transition to (0 ′

#, 0
′
&) ∈ '#,! × '&,2.

5) Suppose 0# ∈ '#,! and '!+1,1 is False. To ensure that
the vehicle does not go to the left lane when the right

lane is not blocked, it is not the case that 0& ∈ '&,1
which can only transition to 0 ′

& ∈ &&,2. In addition, it

is not the case that 0# can only transition to 0 ′
∈ &#,!+1

and 0& ∈ '&,2 which can only transition to 0 ′
& ∈ '&,2.

With 20,010 = 1 and the horizon length 2 (i.e. 3 ! = !+2),
the specification (6) is realizable. In addition, if we let 2,2%

be greater than 1 and restrict the initial state of the system

such that 0# ∕∈ -+,-./+% and 0& ∕∈ .+,-./+%, we get that

(!+!- =⇒ Φ is a tautology.

D. Results
The synthesis was performed on a Pentium 4, 3.4 GHz

computer with 4 Gb of memory. The computation time was

1230 seconds. The resulting automaton contains 2845 nodes.

During the synthesis process, 96796 nodes were generated.

Based on the authors experience, this particular computer

crashes when approximately 97500 nodes are generated.

Thus, this problem with horizon length 2 is as large as

what the computer can handle. This means that without the

receding horizon strategy, problems with the road of length

greater than 3 cannot be solved.

Practically:
Complex partitions are needed.

Theoretically:
Finite yet humongous discrete
state spaces may be needed. 22

··
·2

p

Why is discretization not necessarily a good idea?

Ivan Papusha

Experiments

7

Ivan Papusha

Experiments

7

8

An alternative to explicit discretization:
no explicit discretization

8

An alternative to explicit discretization:
no explicit discretization

CDC 2016

8

An alternative to explicit discretization:
no explicit discretization

CDC 2016

TAC 2015

9

Problem statement

Given

ẋ = f(x, u), x(0) = x0

x(t) 2 X ✓ Rn
, u(t) 2 U ✓ Rm

continuous time, continuous state
with assumptions on f for existence,
uniqueness and Zeno-freeness of solutions

System model

9

Problem statement

Given

ẋ = f(x, u), x(0) = x0

x(t) 2 X ✓ Rn
, u(t) 2 U ✓ Rm

A

B

C

X

System model

Labeling function L : X ! ⌃ = 2AP

L(x) = {x 2 C}

L(x) = {x 2 B}

L(x) = {x 2 A}

(what properties hold at a given state?)

9

Problem statement

Given

ẋ = f(x, u), x(0) = x0

x(t) 2 X ✓ Rn
, u(t) 2 U ✓ Rm

A

B

C

X

t0t1

t2
t3 t4

t5

System model

Labeling function L : X ! ⌃ = 2AP

0 = t0 < t1 < · · · < tN = T

L(x(t�k)) 6= L(x(t+k))

L(x(t)) = L(x(tk)), tk t < tk+1

(what properties hold at a given state?)

9

Problem statement

Given

ẋ = f(x, u), x(0) = x0

x(t) 2 X ✓ Rn
, u(t) 2 U ✓ Rm

A

B

C

X

t0t1

t2
t3 t4

t5

System model

Labeling function L : X ! ⌃ = 2AP

0 = t0 < t1 < · · · < tN = T

L(x(t�k)) 6= L(x(t+k))

L(x(t)) = L(x(tk)), tk t < tk+1

B(�(x0, [0, T], u)) = �0�1 . . .�N�1 2 ⌃⇤

�k = L(x(tk))with

“discrete” behavior:

(what properties hold at a given state?)

9

Problem statement

Given

ẋ = f(x, u), x(0) = x0

x(t) 2 X ✓ Rn
, u(t) 2 U ✓ Rm

Co-safe temporal logic specification '

A final state and a final time T.
xf 2 X

A

B

C

X

t0t1

t2
t3 t4

t5

System model

Labeling function L : X ! ⌃ = 2AP

B(�(x0, [0, T], u)) = �0�1 . . .�N�1 2 ⌃⇤

�k = L(x(tk))with

(every satisfying word has a finite “good” prefix)

(what properties hold at a given state?)

10

De-tour: Automaton representation for temporal logic

Machine-interpretable representation
of all words that satisfy the
corresponding temporal logic formula

B. More complex specification

We now consider three regions, RA, RB , and RC with the
slightly more complex specification

' = (A ! ⌃B) ^ (C ! ⌃B) ^ (⌃A _ ⌃C).

This specification ensures that either RA or RC must be
reached, after which the system must eventually visit RB .
The automaton for this specification is shown in Fig. 4.
Depending on the accrued continuous and transition costs,
there is a choice to go left or right in Fig. 5.

q0start

q1

q2

q3

q4

A

B

C

B

¬B

B

A

C

B

¬B

Fig. 4. Automaton A'2 for '2 = (A ! ⌃B)^(C ! ⌃B)^(⌃A_⌃C)

We form the semidefinite program as before to obtain
five approximate value functions V (·, q), one for each q 2

Q = {q0, . . . , q4} in the automaton. This time, we plot
the execution for two initial conditions x0 = (�0.5,�0.5),
whose path (abc) goes right, and x0 = (�0.5, 0), whose path
(def) goes left. See Fig. 5.

a

b

c

A B C

d
e
f

Fig. 5. Minimum cost paths satisfying '2, and levelsets of the value
function active in each region: the path abc with initial condition x0 =
(�0.5,�0.5) satisfies '2 by visiting RC , while the path def with initial
condition x0 = (�0.5, 0) satisfies '2 by visiting RA. Note that the
levelsets of V (·, q2) (solid, inside RB) have a subtle tilt and magnitude shift
compared to V (·, q4) (dashed, inside RB), which allows for the excursion
away from the origin required by '2.

To interpret this policy, it is valuable to compare the
spectra of the closed loop matrix

Acl
q = A�BR�1BTP ?

q

in the initial mode q = q0 against the accepting mode q = q4,

�(Acl
q0) = {0.786± 1.144i}, �(Acl

q4) = {�1± i}.

In the initial state q0, the closed loop eigenvalues are unsta-
ble, while they are stable in the final state q4. Our procedure
therefore recovers the requirement of '2 that a trajectory
starting near the origin in region RB must go away to visit
another region, and eventually transition to an accepting state
of the automaton before being allowed back to xf = 0.

0 1 2 3 4 5 6 7 8 9 10
1

2

3

4

5

t

q
(t

)

Mode vs time

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

t

V
q

(t
)

a b c

a b c

Fig. 6. State of A'2 and value function along the path abc going right.

VI. CONCLUSION

In this work, we presented an approach to formulate
and solve the optimal control problem under co-safe LTL
constraints using approximate dynamic programming. The
optimal policy is given by following a sequence of value
functions over a hybrid state space, where the continuous
component comes from the continuous-time and continuous-
state dynamics of the system, and the discrete component
comes from the specification automaton. For linear dynamics
and quadratic-constant costs, we showed how to use the spec-
ification automaton to construct a semidefinite program that
gives a suboptimal policy. This procedure does not rely on
discretizing the time/state space or formulating non-convex
optimization problems. At this stage, this approach is limited
to a subset of LTL specifications that admit deterministic
and finite (rather than Büchi) automaton representations.
Extensions to the general class of LTL specifications that
admit deterministic Büchi automaton representations with
continuous-time dynamics are subjects of current work.

Future work will also include the investigation of the PAC
bound on sampling-based methods for nonlinear systems.
The proposed framework can also be incorporated as a
building block in other approximate optimal control methods
for scalable synthesis of systems with LTL specifications.

ACKNOWLEDGMENTS

This work was supported in part by a Department of
Defense NDSEG Fellowship, and by the Boeing company.

(A ! ⌃B) ^ (C ! ⌃B) ^ (⌃A _ ⌃C)

Deterministic finite automata are
sufficient for co-safe linear temporal
logic formulas

11

ẋ = f(x, u), x(0) = x0

x(t) 2 X ✓ Rn
, u(t) 2 U ✓ Rm

A

B

C

X

t0t1

t2
t3 t4

t5

B. More complex specification

We now consider three regions, RA, RB , and RC with the
slightly more complex specification

' = (A ! ⌃B) ^ (C ! ⌃B) ^ (⌃A _ ⌃C).

This specification ensures that either RA or RC must be
reached, after which the system must eventually visit RB .
The automaton for this specification is shown in Fig. 4.
Depending on the accrued continuous and transition costs,
there is a choice to go left or right in Fig. 5.

q0start

q1

q2

q3

q4

A

B

C

B

¬B

B

A

C

B

¬B

Fig. 4. Automaton A'2 for '2 = (A ! ⌃B)^(C ! ⌃B)^(⌃A_⌃C)

We form the semidefinite program as before to obtain
five approximate value functions V (·, q), one for each q 2

Q = {q0, . . . , q4} in the automaton. This time, we plot
the execution for two initial conditions x0 = (�0.5,�0.5),
whose path (abc) goes right, and x0 = (�0.5, 0), whose path
(def) goes left. See Fig. 5.

a

b

c

A B C

d
e
f

Fig. 5. Minimum cost paths satisfying '2, and levelsets of the value
function active in each region: the path abc with initial condition x0 =
(�0.5,�0.5) satisfies '2 by visiting RC , while the path def with initial
condition x0 = (�0.5, 0) satisfies '2 by visiting RA. Note that the
levelsets of V (·, q2) (solid, inside RB) have a subtle tilt and magnitude shift
compared to V (·, q4) (dashed, inside RB), which allows for the excursion
away from the origin required by '2.

To interpret this policy, it is valuable to compare the
spectra of the closed loop matrix

Acl
q = A�BR�1BTP ?

q

in the initial mode q = q0 against the accepting mode q = q4,

�(Acl
q0) = {0.786± 1.144i}, �(Acl

q4) = {�1± i}.

In the initial state q0, the closed loop eigenvalues are unsta-
ble, while they are stable in the final state q4. Our procedure
therefore recovers the requirement of '2 that a trajectory
starting near the origin in region RB must go away to visit
another region, and eventually transition to an accepting state
of the automaton before being allowed back to xf = 0.

0 1 2 3 4 5 6 7 8 9 10
1

2

3

4

5

t

q
(t

)

Mode vs time

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

t

V
q

(t
)

a b c

a b c

Fig. 6. State of A'2 and value function along the path abc going right.

VI. CONCLUSION

In this work, we presented an approach to formulate
and solve the optimal control problem under co-safe LTL
constraints using approximate dynamic programming. The
optimal policy is given by following a sequence of value
functions over a hybrid state space, where the continuous
component comes from the continuous-time and continuous-
state dynamics of the system, and the discrete component
comes from the specification automaton. For linear dynamics
and quadratic-constant costs, we showed how to use the spec-
ification automaton to construct a semidefinite program that
gives a suboptimal policy. This procedure does not rely on
discretizing the time/state space or formulating non-convex
optimization problems. At this stage, this approach is limited
to a subset of LTL specifications that admit deterministic
and finite (rather than Büchi) automaton representations.
Extensions to the general class of LTL specifications that
admit deterministic Büchi automaton representations with
continuous-time dynamics are subjects of current work.

Future work will also include the investigation of the PAC
bound on sampling-based methods for nonlinear systems.
The proposed framework can also be incorporated as a
building block in other approximate optimal control methods
for scalable synthesis of systems with LTL specifications.

ACKNOWLEDGMENTS

This work was supported in part by a Department of
Defense NDSEG Fellowship, and by the Boeing company.

+

Problem statement (2)

Model Specification '

A'

11

ẋ = f(x, u), x(0) = x0

x(t) 2 X ✓ Rn
, u(t) 2 U ✓ Rm

A

B

C

X

t0t1

t2
t3 t4

t5

B. More complex specification

We now consider three regions, RA, RB , and RC with the
slightly more complex specification

' = (A ! ⌃B) ^ (C ! ⌃B) ^ (⌃A _ ⌃C).

This specification ensures that either RA or RC must be
reached, after which the system must eventually visit RB .
The automaton for this specification is shown in Fig. 4.
Depending on the accrued continuous and transition costs,
there is a choice to go left or right in Fig. 5.

q0start

q1

q2

q3

q4

A

B

C

B

¬B

B

A

C

B

¬B

Fig. 4. Automaton A'2 for '2 = (A ! ⌃B)^(C ! ⌃B)^(⌃A_⌃C)

We form the semidefinite program as before to obtain
five approximate value functions V (·, q), one for each q 2

Q = {q0, . . . , q4} in the automaton. This time, we plot
the execution for two initial conditions x0 = (�0.5,�0.5),
whose path (abc) goes right, and x0 = (�0.5, 0), whose path
(def) goes left. See Fig. 5.

a

b

c

A B C

d
e
f

Fig. 5. Minimum cost paths satisfying '2, and levelsets of the value
function active in each region: the path abc with initial condition x0 =
(�0.5,�0.5) satisfies '2 by visiting RC , while the path def with initial
condition x0 = (�0.5, 0) satisfies '2 by visiting RA. Note that the
levelsets of V (·, q2) (solid, inside RB) have a subtle tilt and magnitude shift
compared to V (·, q4) (dashed, inside RB), which allows for the excursion
away from the origin required by '2.

To interpret this policy, it is valuable to compare the
spectra of the closed loop matrix

Acl
q = A�BR�1BTP ?

q

in the initial mode q = q0 against the accepting mode q = q4,

�(Acl
q0) = {0.786± 1.144i}, �(Acl

q4) = {�1± i}.

In the initial state q0, the closed loop eigenvalues are unsta-
ble, while they are stable in the final state q4. Our procedure
therefore recovers the requirement of '2 that a trajectory
starting near the origin in region RB must go away to visit
another region, and eventually transition to an accepting state
of the automaton before being allowed back to xf = 0.

0 1 2 3 4 5 6 7 8 9 10
1

2

3

4

5

t

q
(t

)

Mode vs time

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

t

V
q

(t
)

a b c

a b c

Fig. 6. State of A'2 and value function along the path abc going right.

VI. CONCLUSION

In this work, we presented an approach to formulate
and solve the optimal control problem under co-safe LTL
constraints using approximate dynamic programming. The
optimal policy is given by following a sequence of value
functions over a hybrid state space, where the continuous
component comes from the continuous-time and continuous-
state dynamics of the system, and the discrete component
comes from the specification automaton. For linear dynamics
and quadratic-constant costs, we showed how to use the spec-
ification automaton to construct a semidefinite program that
gives a suboptimal policy. This procedure does not rely on
discretizing the time/state space or formulating non-convex
optimization problems. At this stage, this approach is limited
to a subset of LTL specifications that admit deterministic
and finite (rather than Büchi) automaton representations.
Extensions to the general class of LTL specifications that
admit deterministic Büchi automaton representations with
continuous-time dynamics are subjects of current work.

Future work will also include the investigation of the PAC
bound on sampling-based methods for nonlinear systems.
The proposed framework can also be incorporated as a
building block in other approximate optimal control methods
for scalable synthesis of systems with LTL specifications.

ACKNOWLEDGMENTS

This work was supported in part by a Department of
Defense NDSEG Fellowship, and by the Boeing company.

+

Problem statement (2)

Model Specification '

A'

Compute a control law u that minimizes
Z T

0
`(x(⌧), u(⌧)) d⌧ +

NX

k=0

s(x(tk), q(t
�
k), q(t

+
k))

subject to x(T) = xf and

B(�(x0, [0, T], u)) 2 L(A').

l: loss function
s: cost of mode transition

all discrete behavior
satisfies the specification

12

ẋ = f(x, u), x(0) = x0

x(t) 2 X ✓ Rn
, u(t) 2 U ✓ Rm

Related work

Z T

0
`(x(⌧), u(⌧)) d⌧ +

NX

k=0

s(x(tk), q(t
�
k), q(t

+
k))

Temporal logic specification

(A ! ⌃B) ^ (C ! ⌃B) ^ (⌃A _ ⌃C)

restrict to simple specifications make it a formal methods problem

12

ẋ = f(x, u), x(0) = x0

x(t) 2 X ✓ Rn
, u(t) 2 U ✓ Rm

Related work

Z T

0
`(x(⌧), u(⌧)) d⌧ +

NX

k=0

s(x(tk), q(t
�
k), q(t

+
k))

Temporal logic specification

(A ! ⌃B) ^ (C ! ⌃B) ^ (⌃A _ ⌃C)

restrict to simple specifications make it a formal methods problem

Hedlund & Rantzer
(optimal control for hybrid systems
+ convex dynamic programming)

Xu & Antsaklis
(optimal control for switched systems)

Kariotoglou, et al.
(approximate dynamic programming
for stochastic reachability)

Habets & Belta

Wongpiromsarn, et al.

Wolff, et al.

Fainekos, et al.

13

Product hybrid system
The problem can be formulated as a dynamic programming problem
over a product hybrid system:

h Q, X , E, f, R, G i

13

Product hybrid system
The problem can be formulated as a dynamic programming problem
over a product hybrid system:

h Q, X , E, f, R, G i

set of continuous
states

continuous
vector field

set of states
of the
specification
automaton

set of discrete
transitions

E ✓ Q⇥ ⌃⇥Q

13

Product hybrid system
The problem can be formulated as a dynamic programming problem
over a product hybrid system:

h Q, X , E, f, R, G i

set of continuous
states

continuous
vector field

set of states
of the
specification
automaton

set of discrete
transitions

E ✓ Q⇥ ⌃⇥Q

•The continuous state x evolves according to the vector field.
•The evolution of the discrete state q is governed by the automaton.
•A discrete transition is triggered when x crosses a boundary between two labeled
regions.

13

Product hybrid system
The problem can be formulated as a dynamic programming problem
over a product hybrid system:

h Q, X , E, f, R, G i

set of continuous
states

continuous
vector field

set of states
of the
specification
automaton

set of discrete
transitions

E ✓ Q⇥ ⌃⇥Q
R = {Rq | q 2 Q}
Rq refers to x reachable
while the automaton is in
or transitions to mode q

a collection of guard
regions in X:
For each q, x evolves
inside Rq until it enters a
guard region G(q,σ,q’) and
a transition to q’ is made

•The continuous state x evolves according to the vector field.
•The evolution of the discrete state q is governed by the automaton.
•A discrete transition is triggered when x crosses a boundary between two labeled
regions.

14

Dynamic programming formulation

0 = min
u2U

⇢
@V

?(x, q)

@x

· f(x, u) + `(x, u)

�

8x 2 Rq, 8q 2 Q

V

?(x, q) = min
q0

{V ?(x, q0) + s(x, q, q0)}

8x 2 Ge, 8e = (q,�, q0) 2 E

V*: optimal cost-to-go subject to the specifications

Hybrid Hamilton-Jacobi-Bellman equations over the product space

14

Dynamic programming formulation

0 = min
u2U

⇢
@V

?(x, q)

@x

· f(x, u) + `(x, u)

�

8x 2 Rq, 8q 2 Q

V

?(x, q) = min
q0

{V ?(x, q0) + s(x, q, q0)}

8x 2 Ge, 8e = (q,�, q0) 2 E

V*: optimal cost-to-go subject to the specifications

Hybrid Hamilton-Jacobi-Bellman equations over the product space

• R = {Rq | q ∈ Q} is a collection of regions, where

Rq,σ = {x ∈ X | ∃q′ ∈ Q : (q′,σ, q) ∈ E,

and L(x) = σ}, q ∈ Q,σ ∈ Σ,

Rq =
⋃

σ∈Σ

Rq,σ, q ∈ Q,

• G = {Ge | e ∈ E} is a collection of guards, where

Ge = {x ∈ ∂Rq,σ | δ(q, L(x)) = q′},

for all e = (q,σ, q′) ∈ E.

Each region Rq refers to the continuous states x ∈ X
that are reachable while the automaton is in or transitions
to mode q. For each discrete mode q, the continuous state
evolves inside Rq until it enters a guard region G(q,σ,q′) and
a discrete transition to mode q′ is made.
We can solve the optimal control problem with dynamic

programming by ensuring that the optimal value function
is zero at every accepting state of the automaton. Let
V ⋆ : X × Q → R be the optimal cost-to-go in (2),
with V ⋆(x0, q0) denoting the optimal objective value when
starting at initial condition (x0, q0), subject to the discrete
behavior specification and final condition x(T) = xf . For
simplicity, we assume that V ⋆ has no explicit dependence
on t, which corresponds to searching for a stationary policy,
although this assumption can be relaxed at the expense of
having to choose a time-dependent basis when searching
for an approximate value function later. In this setting, the
cost-to-go satisfies a collection of mixed continuous-discrete
Hamilton–Jacobi–Bellman (HJB) equations,

0 = min
u∈U

{

∂V ⋆(x, q)

∂x
· f(x, u) + ℓ(x, u)

}

,

∀x ∈ Rq, ∀q ∈ Q,

(3)

V ⋆(x, q) = min
q′

{V ⋆(x, q′) + s(x, q, q′)} ,

∀x ∈ Ge, ∀e = (q,σ, q′) ∈ E,
(4)

0 = V ⋆(xf , qf), ∀qf ∈ F. (5)

Equation (3) says that V ⋆(x, q) is an optimal cost-to-go
inside the regions where the label remains constant. The
next equation (4) is a shortest-path equality that must hold at
every continuous state x where discrete state transition to a
different label can happen. Finally, the boundary equation (5)
fixes the value function.
We can interpret these HJB conditions intuitively as a

single-sink shortest-path problem on a directed weighted
graph, where nodes with the same label are treated together
and the weights are the incremental costs ℓ(x, u)dt or the
discrete transition costs s(x, q, q′) (Fig. 1). As long as the
continuous state evolves within the same labeled region,
the value function is subject to the optimality condition
associated with the region that contains that state. As a
result, the continous-state condition (3) must hold on the
interior nodes (white), while the discrete-state switching
condition (4) must hold at the boundary nodes (black).
The graph interpretation also clarifies why automata de-

rived from co-safe LTL specifications fit within the dynamic

q q′

u

Fig. 1. Finite state interpretation of HJB conditions (3)–(5)

programming framework but not automata derived from more
general temporal logics: the semantics of general LTL are
over infinite execution traces, and require Büchi automata
whose acceptance conditions do not readily translate to a
single-sink shortest-path problem. Nevertheless, we believe
the co-safe restriction is a strength, rather than weakness,
because co-safe LTL is still highly expressive, and the
solution methods we describe in the next section are efficient
for many classes of problems, relatively simple to implement,
and can be readily automated.

IV. LOWER BOUNDS ON THE OPTIMAL COST

Let V ⋆ be a value function satisfying the hybrid HJB
conditions (3)–(5), and suppose V is another function that
satisfies the following inequalities,

0 ≤
∂V (x, q)

∂x
· f(x, u) + ℓ(x, u),

∀x ∈ Rq, ∀u ∈ U , ∀q ∈ Q,
(6)

0 ≤V (x, q′)− V (x, q) + s(x, q, q′),

∀x ∈ Ge, ∀e = (q,σ, q′) ∈ E,
(7)

0 = V (xf , qf), ∀qf ∈ F. (8)

Then V (x0, q0) ≤ V ⋆(x0, q0). This approach is motivated
by [19], [22], [23]. The inequalities (6)–(8) characterize a set
of optimal value function under-estimators, among which is
the optimal value function V ⋆ itself. The difference between
the equalities (3)–(5) and the inequalities (6)–(8) is the
removal of the minimum operators in favor of semi-infinite
constraints and the addition of pointwise inequalities.
The strength of using inequalities to search over value

function under-estimators, instead of solving the HJB equa-
tions directly, lies in an ability to come up with approximate
value functions and ADP policies whose suboptimality can
be quantified [24]. The ADP method is enabled by the fact
that we can come up with sufficient conditions that imply
(6)–(8), and relies on finding the largest approximate value
function that is a pointwise underestimate of V ⋆. Thus we
solve the problem

maximize V (x0, q0)
subject to (6), (7), and (8) (9)

over the variables parameterizing V .

While the labels remain constant:

Over discrete transitions:

14

Dynamic programming formulation

0 = min
u2U

⇢
@V

?(x, q)

@x

· f(x, u) + `(x, u)

�

8x 2 Rq, 8q 2 Q

V

?(x, q) = min
q0

{V ?(x, q0) + s(x, q, q0)}

8x 2 Ge, 8e = (q,�, q0) 2 E

V*: optimal cost-to-go subject to the specifications

Hybrid Hamilton-Jacobi-Bellman equations over the product space

• R = {Rq | q ∈ Q} is a collection of regions, where

Rq,σ = {x ∈ X | ∃q′ ∈ Q : (q′,σ, q) ∈ E,

and L(x) = σ}, q ∈ Q,σ ∈ Σ,

Rq =
⋃

σ∈Σ

Rq,σ, q ∈ Q,

• G = {Ge | e ∈ E} is a collection of guards, where

Ge = {x ∈ ∂Rq,σ | δ(q, L(x)) = q′},

for all e = (q,σ, q′) ∈ E.

Each region Rq refers to the continuous states x ∈ X
that are reachable while the automaton is in or transitions
to mode q. For each discrete mode q, the continuous state
evolves inside Rq until it enters a guard region G(q,σ,q′) and
a discrete transition to mode q′ is made.
We can solve the optimal control problem with dynamic

programming by ensuring that the optimal value function
is zero at every accepting state of the automaton. Let
V ⋆ : X × Q → R be the optimal cost-to-go in (2),
with V ⋆(x0, q0) denoting the optimal objective value when
starting at initial condition (x0, q0), subject to the discrete
behavior specification and final condition x(T) = xf . For
simplicity, we assume that V ⋆ has no explicit dependence
on t, which corresponds to searching for a stationary policy,
although this assumption can be relaxed at the expense of
having to choose a time-dependent basis when searching
for an approximate value function later. In this setting, the
cost-to-go satisfies a collection of mixed continuous-discrete
Hamilton–Jacobi–Bellman (HJB) equations,

0 = min
u∈U

{

∂V ⋆(x, q)

∂x
· f(x, u) + ℓ(x, u)

}

,

∀x ∈ Rq, ∀q ∈ Q,

(3)

V ⋆(x, q) = min
q′

{V ⋆(x, q′) + s(x, q, q′)} ,

∀x ∈ Ge, ∀e = (q,σ, q′) ∈ E,
(4)

0 = V ⋆(xf , qf), ∀qf ∈ F. (5)

Equation (3) says that V ⋆(x, q) is an optimal cost-to-go
inside the regions where the label remains constant. The
next equation (4) is a shortest-path equality that must hold at
every continuous state x where discrete state transition to a
different label can happen. Finally, the boundary equation (5)
fixes the value function.
We can interpret these HJB conditions intuitively as a

single-sink shortest-path problem on a directed weighted
graph, where nodes with the same label are treated together
and the weights are the incremental costs ℓ(x, u)dt or the
discrete transition costs s(x, q, q′) (Fig. 1). As long as the
continuous state evolves within the same labeled region,
the value function is subject to the optimality condition
associated with the region that contains that state. As a
result, the continous-state condition (3) must hold on the
interior nodes (white), while the discrete-state switching
condition (4) must hold at the boundary nodes (black).
The graph interpretation also clarifies why automata de-

rived from co-safe LTL specifications fit within the dynamic

q q′

u

Fig. 1. Finite state interpretation of HJB conditions (3)–(5)

programming framework but not automata derived from more
general temporal logics: the semantics of general LTL are
over infinite execution traces, and require Büchi automata
whose acceptance conditions do not readily translate to a
single-sink shortest-path problem. Nevertheless, we believe
the co-safe restriction is a strength, rather than weakness,
because co-safe LTL is still highly expressive, and the
solution methods we describe in the next section are efficient
for many classes of problems, relatively simple to implement,
and can be readily automated.

IV. LOWER BOUNDS ON THE OPTIMAL COST

Let V ⋆ be a value function satisfying the hybrid HJB
conditions (3)–(5), and suppose V is another function that
satisfies the following inequalities,

0 ≤
∂V (x, q)

∂x
· f(x, u) + ℓ(x, u),

∀x ∈ Rq, ∀u ∈ U , ∀q ∈ Q,
(6)

0 ≤V (x, q′)− V (x, q) + s(x, q, q′),

∀x ∈ Ge, ∀e = (q,σ, q′) ∈ E,
(7)

0 = V (xf , qf), ∀qf ∈ F. (8)

Then V (x0, q0) ≤ V ⋆(x0, q0). This approach is motivated
by [19], [22], [23]. The inequalities (6)–(8) characterize a set
of optimal value function under-estimators, among which is
the optimal value function V ⋆ itself. The difference between
the equalities (3)–(5) and the inequalities (6)–(8) is the
removal of the minimum operators in favor of semi-infinite
constraints and the addition of pointwise inequalities.
The strength of using inequalities to search over value

function under-estimators, instead of solving the HJB equa-
tions directly, lies in an ability to come up with approximate
value functions and ADP policies whose suboptimality can
be quantified [24]. The ADP method is enabled by the fact
that we can come up with sufficient conditions that imply
(6)–(8), and relies on finding the largest approximate value
function that is a pointwise underestimate of V ⋆. Thus we
solve the problem

maximize V (x0, q0)
subject to (6), (7), and (8) (9)

over the variables parameterizing V .

While the labels remain constant:

Over discrete transitions:

At the “terminal” state:

0 = V

?(xf , qf), 8qf 2 F

B. More complex specification

We now consider three regions, RA, RB , and RC with the
slightly more complex specification

' = (A ! ⌃B) ^ (C ! ⌃B) ^ (⌃A _ ⌃C).

This specification ensures that either RA or RC must be
reached, after which the system must eventually visit RB .
The automaton for this specification is shown in Fig. 4.
Depending on the accrued continuous and transition costs,
there is a choice to go left or right in Fig. 5.

q0start

q1

q2

q3

q4

A

B

C

B

¬B

B

A

C

B

¬B

Fig. 4. Automaton A'2 for '2 = (A ! ⌃B)^(C ! ⌃B)^(⌃A_⌃C)

We form the semidefinite program as before to obtain
five approximate value functions V (·, q), one for each q 2

Q = {q0, . . . , q4} in the automaton. This time, we plot
the execution for two initial conditions x0 = (�0.5,�0.5),
whose path (abc) goes right, and x0 = (�0.5, 0), whose path
(def) goes left. See Fig. 5.

a

b

c

A B C

d
e
f

Fig. 5. Minimum cost paths satisfying '2, and levelsets of the value
function active in each region: the path abc with initial condition x0 =
(�0.5,�0.5) satisfies '2 by visiting RC , while the path def with initial
condition x0 = (�0.5, 0) satisfies '2 by visiting RA. Note that the
levelsets of V (·, q2) (solid, inside RB) have a subtle tilt and magnitude shift
compared to V (·, q4) (dashed, inside RB), which allows for the excursion
away from the origin required by '2.

To interpret this policy, it is valuable to compare the
spectra of the closed loop matrix

Acl
q = A�BR�1BTP ?

q

in the initial mode q = q0 against the accepting mode q = q4,

�(Acl
q0) = {0.786± 1.144i}, �(Acl

q4) = {�1± i}.

In the initial state q0, the closed loop eigenvalues are unsta-
ble, while they are stable in the final state q4. Our procedure
therefore recovers the requirement of '2 that a trajectory
starting near the origin in region RB must go away to visit
another region, and eventually transition to an accepting state
of the automaton before being allowed back to xf = 0.

0 1 2 3 4 5 6 7 8 9 10
1

2

3

4

5

t

q
(t

)

Mode vs time

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

t

V
q
(t

)

a b c

a b c

Fig. 6. State of A'2 and value function along the path abc going right.

VI. CONCLUSION

In this work, we presented an approach to formulate
and solve the optimal control problem under co-safe LTL
constraints using approximate dynamic programming. The
optimal policy is given by following a sequence of value
functions over a hybrid state space, where the continuous
component comes from the continuous-time and continuous-
state dynamics of the system, and the discrete component
comes from the specification automaton. For linear dynamics
and quadratic-constant costs, we showed how to use the spec-
ification automaton to construct a semidefinite program that
gives a suboptimal policy. This procedure does not rely on
discretizing the time/state space or formulating non-convex
optimization problems. At this stage, this approach is limited
to a subset of LTL specifications that admit deterministic
and finite (rather than Büchi) automaton representations.
Extensions to the general class of LTL specifications that
admit deterministic Büchi automaton representations with
continuous-time dynamics are subjects of current work.

Future work will also include the investigation of the PAC
bound on sampling-based methods for nonlinear systems.
The proposed framework can also be incorporated as a
building block in other approximate optimal control methods
for scalable synthesis of systems with LTL specifications.

ACKNOWLEDGMENTS

This work was supported in part by a Department of
Defense NDSEG Fellowship, and by the Boeing company.

15

(Toward computable) lower bounds on the optimal cost

0 @V (x, q)

@x

· f(x, u) + `(x, u) 8x 2 Rq, 8u 2 U , 8q 2 Q

0 V (x, q0)� V (x, q) + s(x, q, q0) 8x 2 Ge, 8e = (q,�, q0) 2 E

0 = V (xf , qf), 8qf 2 F

15

(Toward computable) lower bounds on the optimal cost

0 @V (x, q)

@x

· f(x, u) + `(x, u) 8x 2 Rq, 8u 2 U , 8q 2 Q

0 V (x, q0)� V (x, q) + s(x, q, q0) 8x 2 Ge, 8e = (q,�, q0) 2 E

0 = V (xf , qf), 8qf 2 F

A function V that satisfies the above conditions is an
under-estimator for the optimal value function V*:

V (x0, q0) V

?(x0, q0)

V: approximate value function

15

(Toward computable) lower bounds on the optimal cost

0 @V (x, q)

@x

· f(x, u) + `(x, u) 8x 2 Rq, 8u 2 U , 8q 2 Q

0 V (x, q0)� V (x, q) + s(x, q, q0) 8x 2 Ge, 8e = (q,�, q0) 2 E

0 = V (xf , qf), 8qf 2 F

0 = min
u2U

⇢
@V

?(x, q)

@x

· f(x, u) + `(x, u)

�
8x 2 Rq, 8q 2 Qcompare to

compare to V

?(x, q) = min
q0

{V ?(x, q0) + s(x, q, q0)} 8x 2 Ge, 8e = (q,�, q0) 2 E

A function V that satisfies the above conditions is an
under-estimator for the optimal value function V*:

V (x0, q0) V

?(x0, q0)

V: approximate value function

15

(Toward computable) lower bounds on the optimal cost

0 @V (x, q)

@x

· f(x, u) + `(x, u) 8x 2 Rq, 8u 2 U , 8q 2 Q

0 V (x, q0)� V (x, q) + s(x, q, q0) 8x 2 Ge, 8e = (q,�, q0) 2 E

0 = V (xf , qf), 8qf 2 F

0 = min
u2U

⇢
@V

?(x, q)

@x

· f(x, u) + `(x, u)

�
8x 2 Rq, 8q 2 Qcompare to

compare to V

?(x, q) = min
q0

{V ?(x, q0) + s(x, q, q0)} 8x 2 Ge, 8e = (q,�, q0) 2 E

A function V that satisfies the above conditions is an
under-estimator for the optimal value function V*:

V (x0, q0) V

?(x0, q0)

V: approximate value function

V ⇤ = TV ⇤

V TV) V V ⇤

Intuition from purely
discrete version:

16

Approximate value function and approximately optimal control law

Search for approximate value function that maximizes V(x0,q0).

Parametrize V with pre-specified basis functions ϕ:

V (x, q) =

nqX

i=1

wi,q�i,q(x)
basis:
function of x,
indexed by q

(one of the many scalarizations)

16

Approximate value function and approximately optimal control law

Search for approximate value function that maximizes V(x0,q0).

Parametrize V with pre-specified basis functions ϕ:

V (x, q) =

nqX

i=1

wi,q�i,q(x)
basis:
function of x,
indexed by q

u(x, q) = argmin
u2U

⇢
@V (x, q)

@x

· f(x, u) + `(x, u)

�

Given V, an approximately optimal control law:

Mode switchings are autonomous, driven by the evolution of x.

(one of the many scalarizations)

17

Search for approximate value function

Linear system: ẋ(t) = Ax(t) +Bu(t), x(0) = x0,

Quadratic continuous cost: `(x, u) = x

T
Qx+ u

T
Ru, Q ⌫ 0, R � 0

Constant switching cost:

For each q ∈ Q, parametrize V by Pq, rq, tq: V (x, q) = x

T
Pqx+ 2r

T
q x+ tq, for all x 2 X

s(x, q, q0) = ⇠ · I ({(q, q0) | q 6= q

0})

17

Search for approximate value function

Linear system: ẋ(t) = Ax(t) +Bu(t), x(0) = x0,

Quadratic continuous cost: `(x, u) = x

T
Qx+ u

T
Ru, Q ⌫ 0, R � 0

Constant switching cost:

For each q ∈ Q, parametrize V by Pq, rq, tq: V (x, q) = x

T
Pqx+ 2r

T
q x+ tq, for all x 2 X

s(x, q, q0) = ⇠ · I ({(q, q0) | q 6= q

0})

max

Pq,rq,tq
V (x0, q0) = x

T
0 Pq0x0 + 2rTq0x0 + tq0 subject to

0

2

4
x

u

1

3

5
T 2

4
A

T
Pq + PqA+Q PqB A

T
rq

B

T
Pq R B

T
rq

r

T
q A r

T
q B 0

3

5

2

4
x

u

1

3

5 8x 2 Rq, 8u 2 U , 8q 2 Q

0

x

1

�T
Pq0 � Pq rq0 � rq

r

T
q0 � r

T
q tq0 � tq + ⇠

�
x

1

�
8x 2 Ge, 8e 2 E

0 = x

T
f Pqfxf + 2rTqfxf + tqf 8qf 2 F

17

Search for approximate value function

Linear system: ẋ(t) = Ax(t) +Bu(t), x(0) = x0,

Quadratic continuous cost: `(x, u) = x

T
Qx+ u

T
Ru, Q ⌫ 0, R � 0

Constant switching cost:

For each q ∈ Q, parametrize V by Pq, rq, tq: V (x, q) = x

T
Pqx+ 2r

T
q x+ tq, for all x 2 X

s(x, q, q0) = ⇠ · I ({(q, q0) | q 6= q

0})

max

Pq,rq,tq
V (x0, q0) = x

T
0 Pq0x0 + 2rTq0x0 + tq0 subject to

0

2

4
x

u

1

3

5
T 2

4
A

T
Pq + PqA+Q PqB A

T
rq

B

T
Pq R B

T
rq

r

T
q A r

T
q B 0

3

5

2

4
x

u

1

3

5 8x 2 Rq, 8u 2 U , 8q 2 Q

0

x

1

�T
Pq0 � Pq rq0 � rq

r

T
q0 � r

T
q tq0 � tq + ⇠

�
x

1

�
8x 2 Ge, 8e 2 E

0 = x

T
f Pqfxf + 2rTqfxf + tqf 8qf 2 F

semi-infinite optimization problem

18

Solving the semi-infinite optimization problem

max

Pq,rq,tq
V (x0, q0) = x

T
0 Pq0x0 + 2rTq0x0 + tq0 subject to

0

2

4
x

u

1

3

5
T 2

4
A

T
Pq + PqA+Q PqB A

T
rq

B

T
Pq R B

T
rq

r

T
q A r

T
q B 0

3

5

2

4
x

u

1

3

5 8x 2 Rq, 8u 2 U , 8q 2 Q

0

x

1

�T
Pq0 � Pq rq0 � rq

r

T
q0 � r

T
q tq0 � tq + ⇠

�
x

1

�
8x 2 Ge, 8e 2 E

0 = x

T
f Pqfxf + 2rTqfxf + tqf 8qf 2 F

For quadratically representable Rq, Ge and U,
(1) use the S-procedure to resort to finite sufficient

conditions for the semi-infinite constraints
(2) translate into a semidefinite program

18

Solving the semi-infinite optimization problem

max

Pq,rq,tq
V (x0, q0) = x

T
0 Pq0x0 + 2rTq0x0 + tq0 subject to

0

2

4
x

u

1

3

5
T 2

4
A

T
Pq + PqA+Q PqB A

T
rq

B

T
Pq R B

T
rq

r

T
q A r

T
q B 0

3

5

2

4
x

u

1

3

5 8x 2 Rq, 8u 2 U , 8q 2 Q

0

x

1

�T
Pq0 � Pq rq0 � rq

r

T
q0 � r

T
q tq0 � tq + ⇠

�
x

1

�
8x 2 Ge, 8e 2 E

0 = x

T
f Pqfxf + 2rTqfxf + tqf 8qf 2 F

For quadratically representable Rq, Ge and U,
(1) use the S-procedure to resort to finite sufficient

conditions for the semi-infinite constraints
(2) translate into a semidefinite program

M0,M1 : Rn ! R
M1 � 0) M0 � 0

*
9� � 0 s.t.

M0(⇣)� �M1(⇣) � 0 8⇣

“S-procedure”

18

Solving the semi-infinite optimization problem

max

Pq,rq,tq
V (x0, q0) = x

T
0 Pq0x0 + 2rTq0x0 + tq0 subject to

0

2

4
x

u

1

3

5
T 2

4
A

T
Pq + PqA+Q PqB A

T
rq

B

T
Pq R B

T
rq

r

T
q A r

T
q B 0

3

5

2

4
x

u

1

3

5 8x 2 Rq, 8u 2 U , 8q 2 Q

0

x

1

�T
Pq0 � Pq rq0 � rq

r

T
q0 � r

T
q tq0 � tq + ⇠

�
x

1

�
8x 2 Ge, 8e 2 E

0 = x

T
f Pqfxf + 2rTqfxf + tqf 8qf 2 F

For quadratically representable Rq, Ge and U,
(1) use the S-procedure to resort to finite sufficient

conditions for the semi-infinite constraints
(2) translate into a semidefinite program

Are Rq and Ge quadratically representable?
•Can be decided based on the atomic propositions in the specification.

19

Example

A =

2 �2
1 0

�
, B =

1
1

�
,

Q = I, R = 1, ⇠ = 1,

x0 = (0.5, 0), xf = (0, 0),

Linear quadratic system

19

Example

A =

2 �2
1 0

�
, B =

1
1

�
,

Q = I, R = 1, ⇠ = 1,

x0 = (0.5, 0), xf = (0, 0),

Linear quadratic system

B. More complex specification

We now consider three regions, RA, RB , and RC with the
slightly more complex specification

' = (A ! ⌃B) ^ (C ! ⌃B) ^ (⌃A _ ⌃C).

This specification ensures that either RA or RC must be
reached, after which the system must eventually visit RB .
The automaton for this specification is shown in Fig. 4.
Depending on the accrued continuous and transition costs,
there is a choice to go left or right in Fig. 5.

q0start

q1

q2

q3

q4

A

B

C

B

¬B

B

A

C

B

¬B

Fig. 4. Automaton A'2 for '2 = (A ! ⌃B)^(C ! ⌃B)^(⌃A_⌃C)

We form the semidefinite program as before to obtain
five approximate value functions V (·, q), one for each q 2

Q = {q0, . . . , q4} in the automaton. This time, we plot
the execution for two initial conditions x0 = (�0.5,�0.5),
whose path (abc) goes right, and x0 = (�0.5, 0), whose path
(def) goes left. See Fig. 5.

a

b

c

A B C

d
e
f

Fig. 5. Minimum cost paths satisfying '2, and levelsets of the value
function active in each region: the path abc with initial condition x0 =
(�0.5,�0.5) satisfies '2 by visiting RC , while the path def with initial
condition x0 = (�0.5, 0) satisfies '2 by visiting RA. Note that the
levelsets of V (·, q2) (solid, inside RB) have a subtle tilt and magnitude shift
compared to V (·, q4) (dashed, inside RB), which allows for the excursion
away from the origin required by '2.

To interpret this policy, it is valuable to compare the
spectra of the closed loop matrix

Acl
q = A�BR�1BTP ?

q

in the initial mode q = q0 against the accepting mode q = q4,

�(Acl
q0) = {0.786± 1.144i}, �(Acl

q4) = {�1± i}.

In the initial state q0, the closed loop eigenvalues are unsta-
ble, while they are stable in the final state q4. Our procedure
therefore recovers the requirement of '2 that a trajectory
starting near the origin in region RB must go away to visit
another region, and eventually transition to an accepting state
of the automaton before being allowed back to xf = 0.

0 1 2 3 4 5 6 7 8 9 10
1

2

3

4

5

t

q
(t

)

Mode vs time

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

t

V
q

(t
)

a b c

a b c

Fig. 6. State of A'2 and value function along the path abc going right.

VI. CONCLUSION

In this work, we presented an approach to formulate
and solve the optimal control problem under co-safe LTL
constraints using approximate dynamic programming. The
optimal policy is given by following a sequence of value
functions over a hybrid state space, where the continuous
component comes from the continuous-time and continuous-
state dynamics of the system, and the discrete component
comes from the specification automaton. For linear dynamics
and quadratic-constant costs, we showed how to use the spec-
ification automaton to construct a semidefinite program that
gives a suboptimal policy. This procedure does not rely on
discretizing the time/state space or formulating non-convex
optimization problems. At this stage, this approach is limited
to a subset of LTL specifications that admit deterministic
and finite (rather than Büchi) automaton representations.
Extensions to the general class of LTL specifications that
admit deterministic Büchi automaton representations with
continuous-time dynamics are subjects of current work.

Future work will also include the investigation of the PAC
bound on sampling-based methods for nonlinear systems.
The proposed framework can also be incorporated as a
building block in other approximate optimal control methods
for scalable synthesis of systems with LTL specifications.

ACKNOWLEDGMENTS

This work was supported in part by a Department of
Defense NDSEG Fellowship, and by the Boeing company.

(A ! ⌃B) ^ (C ! ⌃B) ^ (⌃A _ ⌃C)

Specification

a

b

c

A B C

d
e
f

19

Example

A =

2 �2
1 0

�
, B =

1
1

�
,

Q = I, R = 1, ⇠ = 1,

x0 = (0.5, 0), xf = (0, 0),

Linear quadratic system

B. More complex specification

We now consider three regions, RA, RB , and RC with the
slightly more complex specification

' = (A ! ⌃B) ^ (C ! ⌃B) ^ (⌃A _ ⌃C).

This specification ensures that either RA or RC must be
reached, after which the system must eventually visit RB .
The automaton for this specification is shown in Fig. 4.
Depending on the accrued continuous and transition costs,
there is a choice to go left or right in Fig. 5.

q0start

q1

q2

q3

q4

A

B

C

B

¬B

B

A

C

B

¬B

Fig. 4. Automaton A'2 for '2 = (A ! ⌃B)^(C ! ⌃B)^(⌃A_⌃C)

We form the semidefinite program as before to obtain
five approximate value functions V (·, q), one for each q 2

Q = {q0, . . . , q4} in the automaton. This time, we plot
the execution for two initial conditions x0 = (�0.5,�0.5),
whose path (abc) goes right, and x0 = (�0.5, 0), whose path
(def) goes left. See Fig. 5.

a

b

c

A B C

d
e
f

Fig. 5. Minimum cost paths satisfying '2, and levelsets of the value
function active in each region: the path abc with initial condition x0 =
(�0.5,�0.5) satisfies '2 by visiting RC , while the path def with initial
condition x0 = (�0.5, 0) satisfies '2 by visiting RA. Note that the
levelsets of V (·, q2) (solid, inside RB) have a subtle tilt and magnitude shift
compared to V (·, q4) (dashed, inside RB), which allows for the excursion
away from the origin required by '2.

To interpret this policy, it is valuable to compare the
spectra of the closed loop matrix

Acl
q = A�BR�1BTP ?

q

in the initial mode q = q0 against the accepting mode q = q4,

�(Acl
q0) = {0.786± 1.144i}, �(Acl

q4) = {�1± i}.

In the initial state q0, the closed loop eigenvalues are unsta-
ble, while they are stable in the final state q4. Our procedure
therefore recovers the requirement of '2 that a trajectory
starting near the origin in region RB must go away to visit
another region, and eventually transition to an accepting state
of the automaton before being allowed back to xf = 0.

0 1 2 3 4 5 6 7 8 9 10
1

2

3

4

5

t

q
(t

)

Mode vs time

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

t

V
q

(t
)

a b c

a b c

Fig. 6. State of A'2 and value function along the path abc going right.

VI. CONCLUSION

In this work, we presented an approach to formulate
and solve the optimal control problem under co-safe LTL
constraints using approximate dynamic programming. The
optimal policy is given by following a sequence of value
functions over a hybrid state space, where the continuous
component comes from the continuous-time and continuous-
state dynamics of the system, and the discrete component
comes from the specification automaton. For linear dynamics
and quadratic-constant costs, we showed how to use the spec-
ification automaton to construct a semidefinite program that
gives a suboptimal policy. This procedure does not rely on
discretizing the time/state space or formulating non-convex
optimization problems. At this stage, this approach is limited
to a subset of LTL specifications that admit deterministic
and finite (rather than Büchi) automaton representations.
Extensions to the general class of LTL specifications that
admit deterministic Büchi automaton representations with
continuous-time dynamics are subjects of current work.

Future work will also include the investigation of the PAC
bound on sampling-based methods for nonlinear systems.
The proposed framework can also be incorporated as a
building block in other approximate optimal control methods
for scalable synthesis of systems with LTL specifications.

ACKNOWLEDGMENTS

This work was supported in part by a Department of
Defense NDSEG Fellowship, and by the Boeing company.

(A ! ⌃B) ^ (C ! ⌃B) ^ (⌃A _ ⌃C)

Specification

a

b

c

A B C

d
e
f

Acl
q = A�BR�1BTP ?

q

Compare the spectra of the closed-
loop matrix in different modes

�(Acl
q0) = {0.786± 1.144i}

�(Acl
q4) = {�1± i}

19

Example

A =

2 �2
1 0

�
, B =

1
1

�
,

Q = I, R = 1, ⇠ = 1,

x0 = (0.5, 0), xf = (0, 0),

Linear quadratic system

B. More complex specification

We now consider three regions, RA, RB , and RC with the
slightly more complex specification

' = (A ! ⌃B) ^ (C ! ⌃B) ^ (⌃A _ ⌃C).

This specification ensures that either RA or RC must be
reached, after which the system must eventually visit RB .
The automaton for this specification is shown in Fig. 4.
Depending on the accrued continuous and transition costs,
there is a choice to go left or right in Fig. 5.

q0start

q1

q2

q3

q4

A

B

C

B

¬B

B

A

C

B

¬B

Fig. 4. Automaton A'2 for '2 = (A ! ⌃B)^(C ! ⌃B)^(⌃A_⌃C)

We form the semidefinite program as before to obtain
five approximate value functions V (·, q), one for each q 2

Q = {q0, . . . , q4} in the automaton. This time, we plot
the execution for two initial conditions x0 = (�0.5,�0.5),
whose path (abc) goes right, and x0 = (�0.5, 0), whose path
(def) goes left. See Fig. 5.

a

b

c

A B C

d
e
f

Fig. 5. Minimum cost paths satisfying '2, and levelsets of the value
function active in each region: the path abc with initial condition x0 =
(�0.5,�0.5) satisfies '2 by visiting RC , while the path def with initial
condition x0 = (�0.5, 0) satisfies '2 by visiting RA. Note that the
levelsets of V (·, q2) (solid, inside RB) have a subtle tilt and magnitude shift
compared to V (·, q4) (dashed, inside RB), which allows for the excursion
away from the origin required by '2.

To interpret this policy, it is valuable to compare the
spectra of the closed loop matrix

Acl
q = A�BR�1BTP ?

q

in the initial mode q = q0 against the accepting mode q = q4,

�(Acl
q0) = {0.786± 1.144i}, �(Acl

q4) = {�1± i}.

In the initial state q0, the closed loop eigenvalues are unsta-
ble, while they are stable in the final state q4. Our procedure
therefore recovers the requirement of '2 that a trajectory
starting near the origin in region RB must go away to visit
another region, and eventually transition to an accepting state
of the automaton before being allowed back to xf = 0.

0 1 2 3 4 5 6 7 8 9 10
1

2

3

4

5

t

q
(t

)

Mode vs time

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

t

V
q

(t
)

a b c

a b c

Fig. 6. State of A'2 and value function along the path abc going right.

VI. CONCLUSION

In this work, we presented an approach to formulate
and solve the optimal control problem under co-safe LTL
constraints using approximate dynamic programming. The
optimal policy is given by following a sequence of value
functions over a hybrid state space, where the continuous
component comes from the continuous-time and continuous-
state dynamics of the system, and the discrete component
comes from the specification automaton. For linear dynamics
and quadratic-constant costs, we showed how to use the spec-
ification automaton to construct a semidefinite program that
gives a suboptimal policy. This procedure does not rely on
discretizing the time/state space or formulating non-convex
optimization problems. At this stage, this approach is limited
to a subset of LTL specifications that admit deterministic
and finite (rather than Büchi) automaton representations.
Extensions to the general class of LTL specifications that
admit deterministic Büchi automaton representations with
continuous-time dynamics are subjects of current work.

Future work will also include the investigation of the PAC
bound on sampling-based methods for nonlinear systems.
The proposed framework can also be incorporated as a
building block in other approximate optimal control methods
for scalable synthesis of systems with LTL specifications.

ACKNOWLEDGMENTS

This work was supported in part by a Department of
Defense NDSEG Fellowship, and by the Boeing company.

(A ! ⌃B) ^ (C ! ⌃B) ^ (⌃A _ ⌃C)

Specification

a

b

c

A B C

d
e
f

Acl
q = A�BR�1BTP ?

q

Compare the spectra of the closed-
loop matrix in different modes

�(Acl
q0) = {0.786± 1.144i}

�(Acl
q4) = {�1± i}

https://github.com/u-t-autonomous/sydar

https://github.com/u-t-autonomous/sydar

20

Summary

No need for explicit finite abstraction
(w.r.t. the dynamics)

No need for expensive reachability
calculations

20

Summary

No need for explicit finite abstraction
(w.r.t. the dynamics)

No need for expensive reachability
calculations

Hope for scalability?

0

2

4
x

u

1

3

5
T 2

4
A

T
Pq + PqA+Q PqB A

T
rq

B

T
Pq R B

T
rq

r

T
q A r

T
q B 0

3

5

2

4
x

u

1

3

5

8x 2 Rq, 8u 2 U , 8q 2 Q

Scalability goal:
“Can we synthesize temporal-logic-
constrained controllers for systems
with 50 continuous states?”

20

Summary

No need for explicit finite abstraction
(w.r.t. the dynamics)

No need for expensive reachability
calculations

Hope for scalability?

0

2

4
x

u

1

3

5
T 2

4
A

T
Pq + PqA+Q PqB A

T
rq

B

T
Pq R B

T
rq

r

T
q A r

T
q B 0

3

5

2

4
x

u

1

3

5

8x 2 Rq, 8u 2 U , 8q 2 Q

Scalability goal:
“Can we synthesize temporal-logic-
constrained controllers for systems
with 50 continuous states?”

Conservatism — S-procedure and basis selection

Policy is approximately optimal (bounds on sub optimality possible!)

Only co-safe temporal logic specifications (at this point)

21

What is next?

Demonstrate scalability
Reduce conservatism
Extend to broader classes dynamics — hybrid, nonlinear,…
Expand the family of specifications

usual
suspects

new
opportunities

Open up a broad set of new problems to ideas from controls
and optimization

Ivan Papusha

Learning from expert demonstrations

• Incorporating expert demonstrations into an autonomous system is difficult 

• Even when expert demonstrations are somehow incorporated, generalizing to
unseen scenarios can be unsafe. 

• Can we generalize in a “safe” way using side information?
- what does “safe” mean?
- what kind of “side information” can be incorporated?

22

Ivan Papusha

Learning by expert demonstration

23

Ivan Papusha

Learning by expert demonstration

23

p(1), p(2), . . . x

(1)
, x

(2)
, . . .

f(·, p)

1. Expert gives “optimal” demonstrations

Ivan Papusha

Learning by expert demonstration

23

p(1), p(2), . . . x

(1)
, x

(2)
, . . .

f(·, p)

1. Expert gives “optimal” demonstrations

2. Demonstrations used to “learn” the expert

p(1), p(2), . . . x

(1)
, x

(2)
, . . .

f̂

Ivan Papusha

Learning by expert demonstration

23

p(1), p(2), . . . x

(1)
, x

(2)
, . . .

f(·, p)

1. Expert gives “optimal” demonstrations

2. Demonstrations used to “learn” the expert

p(1), p(2), . . . x

(1)
, x

(2)
, . . .

f̂

3. Learned objective (e.g. loss function) used to
mimic the expert in an autonomous system

f̂ plant

Ivan Papusha

Learning by expert demonstration

23

p(1), p(2), . . . x

(1)
, x

(2)
, . . .

f(·, p)

1. Expert gives “optimal” demonstrations

2. Demonstrations used to “learn” the expert

p(1), p(2), . . . x

(1)
, x

(2)
, . . .

f̂

3. Learned objective (e.g. loss function) used to
mimic the expert in an autonomous system

f̂ plant
heli.stanford.edu

Ivan Papusha

Learning fails when the expert is inconsistent

• inverse optimal control applied to a grid world
• dynamics are modeled as a transition system
• learned an approximation to the optimal value function

24

Expert demonstrations:

a breakdown of the dynamic programming principle,
because the stage cost plus cost-to-go can be made
smaller by choosing x instead of x(k),

ℓ(s,α, s′) + V̂ (s′) < ℓ(s,α(k), s′
(k)

) + V̂ (s′
(k)

).

In this case, either the value function V̂ (and hence
θ) is wrong, or the “optimal” demonstration x(k) is a
mistake. The objective in (5) remains agnostic to these
alternatives by penalizing, through each term

max
x∈Xk

{

(

−r(k)cons(x, θ)
)

+

}

= max
α,s′

{

max(0, ℓ(s,α(k), s′
(k)

) + V̂θ(s
′(k))

− ℓ(s,α, s′)− V̂θ(s
′))

}

the worst-case “regret” of a policy choosing a state-
action (α, s′) at s(k) instead of (α(k), s′

(k)). Here, we
write V̂θ to make explicit the dependence of the im-
puted value function on the weights θ to be deter-
mined.

We can interpret the objective in (5) as a game be-
tween a rational expert providing (through D) optimal
state-action pairs, and a student, who tries to approxi-
mate the expert’s policy by looking at examples where
the two differ on the choice of optimal action. Wher-
ever they differ, the student tries to make the difference
in imputed cost small.

Other measures of inconsistency between the expert
and the student are possible depending on the broad
dynamics setting. For example, if the dynamics are
stochastic, we can minimize the expected regret, or
maximize the likelihood of the observed data [9].

4. VALUE OF SIDE INFORMATION

4.1 Fair comparison
Returning to our original motivation, we ask the ques-

tion: can side information, provided as temporal behavior
constraints that optimal runs of the transition system must
satisfy, be used to our advantage when attempting to re-
cover the stage cost function from expert training data? We
argue that the answer is yes. The specific value of the tem-
poral side information is in providing a task-level, instead of
a time-based, memory.
To illustrate, we compare an implementation of baseline

inverse optimal control to inverse optimal control with avail-
able temporal behavior side information.

algorithm: baseline inverse optimal control
given: TS, Θ ⊆ R

M , ℓ : S ×Act× S → R, sf ∈ S,

{φi : S → R}Mi=1, and D =
{(

(α(k), s′
(k)), s(k)

)}N

k=1

output: imputed value function V̂ (s)
begin

1. for each k = 1, . . . , N :

x(k) := (α(k), s′
(k)), p(k) := s(k),

Xk := {(α, s′) | s(k)
α

−→ s′},
define f(x, p(k)) := ℓ(s(k),α, s′) + V̂ (s′),

for all x = (α, s′) ∈ Xk

end for

2. solve convex optimization problem (5)
for an optimal weight θ⋆

3. return V̂ (s) =
∑M

i=1 θ
⋆
i φi(s)

end

Note that in the baseline algorithm, we are looking for an
optimal time-invariant strategy, ignoring any behavioral side
information; this would be expected in a classical applica-
tion of inverse optimal control or reward learning. We could
impute a general time-varying policy, however the number of
free parameters grows quickly with the number of timesteps,
and in most practical applications the time horizon is either
unknown or very large.

Next, we present the algorithm that incorporates behav-
ioral side information. Note that the differences from the
baseline are in the format of the training data, the avail-
ability of the behavioral specification automaton A, and the
“hybrid” (i.e., using the product state space S × Q) nature
of the imputed value function.

algorithm: inverse optimal control with side information
given: TS, A, Θ ⊆ R

M , ℓ : S ×Act× S → R, sf ∈ S,
{φi : S ×Q → R}Mi=1,

and D =
{(

(α(k), s′
(k)

, q′
(k)), (s(k), q(k))

)}N

k=1

output: imputed value function V̂ (s, q)
begin

1. for each k = 1, . . . , N :

x(k) := (α(k), s′
(k)

, q′
(k)), p(k) := (s(k), q(k)),

Xk := {(α, s′, q′) | s(k)
α

−→ s′, q′ ∈ δ(q(k), L(s(k)))},
define f(x, p(k)) := ℓ(s(k),α, s′) + V̂ (s′, q′),

for all x = (α, s′, q′) ∈ Xk

end for
2. solve convex optimization problem (5)

for an optimal weight θ⋆

3. return V̂ (s, q) =
∑M

i=1 θ
⋆
i φi(s, q)

end

4.2 Gridworld map
We use a 6-by-6 gridworld map for this experiment, as

shown in Figure 2. We assume that an agent placed on

Figure 2: Gridworld map and three expert demon-
strations (red: obstacles, green: goals, blue: initial
state, yellow: final state)

Learned policy:

each square has four actions (up, down, left, right), and all
transitions are deterministic. If the agent is at a border
square and tries to move towards the border (e.g., move
upwards in the top row), the agent will not move. The blue
square is the initial state s0 and the yellow square is the
final goal state sf .

Behavioral demonstrations.
The agent must start from the blue square, pass the two

green squares (in any order) while avoiding all red squares,
and eventually go to the yellow square. Once it reaches the
yellow square, the task is complete. The transition system
has 36 states, and the specification automaton has 4 states.
Thus there are a total of 144 states in the product TS ⊗A,
and at each state, there are 4 available (deterministic) ac-
tions. We show the agent 3 different expert demonstrations
that satisfy the behavioral specification.

Reward model.
We use M = 5 different features as basis functions of the

action-value function, designed as in Table 1.

v6 The optimal state value function corresponding to
the stage cost function that gives 0 only when
the goal state (yellow block with final state q4) is
reached or at the final goal state, otherwise -1.

v7 The optimal state value function corresponding to
the reward function that gives 0 only when a new
intermediate state (green block) is reached or at
the final goal state, otherwise -1.

v8 The optimal state value function corresponding to
the reward function that gives 1 only when an ob-
stacle (red block) is reached, otherwise 0.

v4 The optimal state value function corresponding to
the stage cost function that gives 0 only at transi-
tions in the demonstration, otherwise 1.

v5 The optimal state value function corresponding to
the stage cost function that gives 1 to all transi-
tions.

Table 1: Design of basis functions φi, i = 1, . . . , 5.

4.3 Simulation without side information
In this case, the feature v7 corresponds to the stage cost

function, such that any transition that goes to a green block
has loss 0, otherwise 1. Using the baseline algorithm, the
learned weight vector is

θ = (1, 0,−2290.59, 6396.68,−1),

and the learned optimal non-deterministic strategy is shown
in Figure 3. Note that following the learned strategy an
agent can miss one green block before reaching the yellow
block, or even get stuck, depending on its initial off-policy
location.

4.4 Simulation with side information
In this case, the side information is given as the DFA

shown in Figure 4. Following the side information aware
algorithm, we obtain the learned weight vector

θ = (1,−0.36,−81.22, 230.76,−0.64),

Figure 3: Learned memoryless strategy without side
information. The strategy can miss one green block
before reaching the yellow block because of a lack of
task memory.

q0start

q1

q2

q3

p1

p2

¬p1 ∧ ¬p2
p2

¬p2

p1
¬p1

true

Figure 4: Side information: a DFA constructed for
the example. The atomic proposition p1 is true
whenever the agent is in the green block near the
yellow block, and p2 is true in the other green block.

which imputes the mode-dependent strategy shown in Fig-
ure 5. The task is successfully implemented with this strat-
egy, because the DFA is able to track which green squares
have been visited in which order, and whether it is possible
to move on to the yellow square.

5. CRITIQUES AND CONCLUSIONS
In this work, we presented a general framework for impos-

ing behavioral specifications on policies learned from expert
demonstrations. We showed that temporal side informa-
tion in the form of a specification automaton can be used
to effectively constrain the number of free parameters in an
inverse optimal control problem, allowing imputed policies
to have a task memory—rather then a time-based memory,
or no memory at all. It remains to be seen whether this
framework can be put to practical use in dynamically inter-
esting applications. Although we have treated the problem
entirely using deterministic finite-state transition systems
and policies, we can envision several extensions. The most
clear extension is to consider continuous dynamics, in which
case the policy is a hybrid policy over a mixed continuous-

start

end

B

A

start

end

B

A

V ?(s)

f(x, p) = `(s, s0) + V̂ (s0)

Task: get from start to end in the fewest steps, while visiting A and B in any order

Ivan Papusha

Learning fails when the expert is inconsistent

• inverse optimal control applied to a grid world
• dynamics are modeled as a transition system
• learned an approximation to the optimal value function

24

Expert demonstrations:

a breakdown of the dynamic programming principle,
because the stage cost plus cost-to-go can be made
smaller by choosing x instead of x(k),

ℓ(s,α, s′) + V̂ (s′) < ℓ(s,α(k), s′
(k)

) + V̂ (s′
(k)

).

In this case, either the value function V̂ (and hence
θ) is wrong, or the “optimal” demonstration x(k) is a
mistake. The objective in (5) remains agnostic to these
alternatives by penalizing, through each term

max
x∈Xk

{

(

−r(k)cons(x, θ)
)

+

}

= max
α,s′

{

max(0, ℓ(s,α(k), s′
(k)

) + V̂θ(s
′(k))

− ℓ(s,α, s′)− V̂θ(s
′))

}

the worst-case “regret” of a policy choosing a state-
action (α, s′) at s(k) instead of (α(k), s′

(k)). Here, we
write V̂θ to make explicit the dependence of the im-
puted value function on the weights θ to be deter-
mined.

We can interpret the objective in (5) as a game be-
tween a rational expert providing (through D) optimal
state-action pairs, and a student, who tries to approxi-
mate the expert’s policy by looking at examples where
the two differ on the choice of optimal action. Wher-
ever they differ, the student tries to make the difference
in imputed cost small.

Other measures of inconsistency between the expert
and the student are possible depending on the broad
dynamics setting. For example, if the dynamics are
stochastic, we can minimize the expected regret, or
maximize the likelihood of the observed data [9].

4. VALUE OF SIDE INFORMATION

4.1 Fair comparison
Returning to our original motivation, we ask the ques-

tion: can side information, provided as temporal behavior
constraints that optimal runs of the transition system must
satisfy, be used to our advantage when attempting to re-
cover the stage cost function from expert training data? We
argue that the answer is yes. The specific value of the tem-
poral side information is in providing a task-level, instead of
a time-based, memory.
To illustrate, we compare an implementation of baseline

inverse optimal control to inverse optimal control with avail-
able temporal behavior side information.

algorithm: baseline inverse optimal control
given: TS, Θ ⊆ R

M , ℓ : S ×Act× S → R, sf ∈ S,

{φi : S → R}Mi=1, and D =
{(

(α(k), s′
(k)), s(k)

)}N

k=1

output: imputed value function V̂ (s)
begin

1. for each k = 1, . . . , N :

x(k) := (α(k), s′
(k)), p(k) := s(k),

Xk := {(α, s′) | s(k)
α

−→ s′},
define f(x, p(k)) := ℓ(s(k),α, s′) + V̂ (s′),

for all x = (α, s′) ∈ Xk

end for

2. solve convex optimization problem (5)
for an optimal weight θ⋆

3. return V̂ (s) =
∑M

i=1 θ
⋆
i φi(s)

end

Note that in the baseline algorithm, we are looking for an
optimal time-invariant strategy, ignoring any behavioral side
information; this would be expected in a classical applica-
tion of inverse optimal control or reward learning. We could
impute a general time-varying policy, however the number of
free parameters grows quickly with the number of timesteps,
and in most practical applications the time horizon is either
unknown or very large.

Next, we present the algorithm that incorporates behav-
ioral side information. Note that the differences from the
baseline are in the format of the training data, the avail-
ability of the behavioral specification automaton A, and the
“hybrid” (i.e., using the product state space S × Q) nature
of the imputed value function.

algorithm: inverse optimal control with side information
given: TS, A, Θ ⊆ R

M , ℓ : S ×Act× S → R, sf ∈ S,
{φi : S ×Q → R}Mi=1,

and D =
{(

(α(k), s′
(k)

, q′
(k)), (s(k), q(k))

)}N

k=1

output: imputed value function V̂ (s, q)
begin

1. for each k = 1, . . . , N :

x(k) := (α(k), s′
(k)

, q′
(k)), p(k) := (s(k), q(k)),

Xk := {(α, s′, q′) | s(k)
α

−→ s′, q′ ∈ δ(q(k), L(s(k)))},
define f(x, p(k)) := ℓ(s(k),α, s′) + V̂ (s′, q′),

for all x = (α, s′, q′) ∈ Xk

end for
2. solve convex optimization problem (5)

for an optimal weight θ⋆

3. return V̂ (s, q) =
∑M

i=1 θ
⋆
i φi(s, q)

end

4.2 Gridworld map
We use a 6-by-6 gridworld map for this experiment, as

shown in Figure 2. We assume that an agent placed on

Figure 2: Gridworld map and three expert demon-
strations (red: obstacles, green: goals, blue: initial
state, yellow: final state)

Learned policy:

start

end

B

A

start

end

B

A

V ?(s)

f(x, p) = `(s, s0) + V̂ (s0)

Task: get from start to end in the fewest steps, while visiting A and B in any order

Ivan Papusha

Learning fails when the expert is inconsistent

• inverse optimal control applied to a grid world
• dynamics are modeled as a transition system
• learned an approximation to the optimal value function

24

Expert demonstrations:

a breakdown of the dynamic programming principle,
because the stage cost plus cost-to-go can be made
smaller by choosing x instead of x(k),

ℓ(s,α, s′) + V̂ (s′) < ℓ(s,α(k), s′
(k)

) + V̂ (s′
(k)

).

In this case, either the value function V̂ (and hence
θ) is wrong, or the “optimal” demonstration x(k) is a
mistake. The objective in (5) remains agnostic to these
alternatives by penalizing, through each term

max
x∈Xk

{

(

−r(k)cons(x, θ)
)

+

}

= max
α,s′

{

max(0, ℓ(s,α(k), s′
(k)

) + V̂θ(s
′(k))

− ℓ(s,α, s′)− V̂θ(s
′))

}

the worst-case “regret” of a policy choosing a state-
action (α, s′) at s(k) instead of (α(k), s′

(k)). Here, we
write V̂θ to make explicit the dependence of the im-
puted value function on the weights θ to be deter-
mined.

We can interpret the objective in (5) as a game be-
tween a rational expert providing (through D) optimal
state-action pairs, and a student, who tries to approxi-
mate the expert’s policy by looking at examples where
the two differ on the choice of optimal action. Wher-
ever they differ, the student tries to make the difference
in imputed cost small.

Other measures of inconsistency between the expert
and the student are possible depending on the broad
dynamics setting. For example, if the dynamics are
stochastic, we can minimize the expected regret, or
maximize the likelihood of the observed data [9].

4. VALUE OF SIDE INFORMATION

4.1 Fair comparison
Returning to our original motivation, we ask the ques-

tion: can side information, provided as temporal behavior
constraints that optimal runs of the transition system must
satisfy, be used to our advantage when attempting to re-
cover the stage cost function from expert training data? We
argue that the answer is yes. The specific value of the tem-
poral side information is in providing a task-level, instead of
a time-based, memory.
To illustrate, we compare an implementation of baseline

inverse optimal control to inverse optimal control with avail-
able temporal behavior side information.

algorithm: baseline inverse optimal control
given: TS, Θ ⊆ R

M , ℓ : S ×Act× S → R, sf ∈ S,

{φi : S → R}Mi=1, and D =
{(

(α(k), s′
(k)), s(k)

)}N

k=1

output: imputed value function V̂ (s)
begin

1. for each k = 1, . . . , N :

x(k) := (α(k), s′
(k)), p(k) := s(k),

Xk := {(α, s′) | s(k)
α

−→ s′},
define f(x, p(k)) := ℓ(s(k),α, s′) + V̂ (s′),

for all x = (α, s′) ∈ Xk

end for

2. solve convex optimization problem (5)
for an optimal weight θ⋆

3. return V̂ (s) =
∑M

i=1 θ
⋆
i φi(s)

end

Note that in the baseline algorithm, we are looking for an
optimal time-invariant strategy, ignoring any behavioral side
information; this would be expected in a classical applica-
tion of inverse optimal control or reward learning. We could
impute a general time-varying policy, however the number of
free parameters grows quickly with the number of timesteps,
and in most practical applications the time horizon is either
unknown or very large.

Next, we present the algorithm that incorporates behav-
ioral side information. Note that the differences from the
baseline are in the format of the training data, the avail-
ability of the behavioral specification automaton A, and the
“hybrid” (i.e., using the product state space S × Q) nature
of the imputed value function.

algorithm: inverse optimal control with side information
given: TS, A, Θ ⊆ R

M , ℓ : S ×Act× S → R, sf ∈ S,
{φi : S ×Q → R}Mi=1,

and D =
{(

(α(k), s′
(k)

, q′
(k)), (s(k), q(k))

)}N

k=1

output: imputed value function V̂ (s, q)
begin

1. for each k = 1, . . . , N :

x(k) := (α(k), s′
(k)

, q′
(k)), p(k) := (s(k), q(k)),

Xk := {(α, s′, q′) | s(k)
α

−→ s′, q′ ∈ δ(q(k), L(s(k)))},
define f(x, p(k)) := ℓ(s(k),α, s′) + V̂ (s′, q′),

for all x = (α, s′, q′) ∈ Xk

end for
2. solve convex optimization problem (5)

for an optimal weight θ⋆

3. return V̂ (s, q) =
∑M

i=1 θ
⋆
i φi(s, q)

end

4.2 Gridworld map
We use a 6-by-6 gridworld map for this experiment, as

shown in Figure 2. We assume that an agent placed on

Figure 2: Gridworld map and three expert demon-
strations (red: obstacles, green: goals, blue: initial
state, yellow: final state)

Learned policy:

start

end

B

A

start

end

B

A

V ?(s)

f(x, p) = `(s, s0) + V̂ (s0)

Task: get from start to end in the fewest steps, while visiting A and B in any order

Ivan Papusha

Learning fails when the expert is inconsistent

• inverse optimal control applied to a grid world
• dynamics are modeled as a transition system
• learned an approximation to the optimal value function

24

Expert demonstrations:

a breakdown of the dynamic programming principle,
because the stage cost plus cost-to-go can be made
smaller by choosing x instead of x(k),

ℓ(s,α, s′) + V̂ (s′) < ℓ(s,α(k), s′
(k)

) + V̂ (s′
(k)

).

In this case, either the value function V̂ (and hence
θ) is wrong, or the “optimal” demonstration x(k) is a
mistake. The objective in (5) remains agnostic to these
alternatives by penalizing, through each term

max
x∈Xk

{

(

−r(k)cons(x, θ)
)

+

}

= max
α,s′

{

max(0, ℓ(s,α(k), s′
(k)

) + V̂θ(s
′(k))

− ℓ(s,α, s′)− V̂θ(s
′))

}

the worst-case “regret” of a policy choosing a state-
action (α, s′) at s(k) instead of (α(k), s′

(k)). Here, we
write V̂θ to make explicit the dependence of the im-
puted value function on the weights θ to be deter-
mined.

We can interpret the objective in (5) as a game be-
tween a rational expert providing (through D) optimal
state-action pairs, and a student, who tries to approxi-
mate the expert’s policy by looking at examples where
the two differ on the choice of optimal action. Wher-
ever they differ, the student tries to make the difference
in imputed cost small.

Other measures of inconsistency between the expert
and the student are possible depending on the broad
dynamics setting. For example, if the dynamics are
stochastic, we can minimize the expected regret, or
maximize the likelihood of the observed data [9].

4. VALUE OF SIDE INFORMATION

4.1 Fair comparison
Returning to our original motivation, we ask the ques-

tion: can side information, provided as temporal behavior
constraints that optimal runs of the transition system must
satisfy, be used to our advantage when attempting to re-
cover the stage cost function from expert training data? We
argue that the answer is yes. The specific value of the tem-
poral side information is in providing a task-level, instead of
a time-based, memory.
To illustrate, we compare an implementation of baseline

inverse optimal control to inverse optimal control with avail-
able temporal behavior side information.

algorithm: baseline inverse optimal control
given: TS, Θ ⊆ R

M , ℓ : S ×Act× S → R, sf ∈ S,

{φi : S → R}Mi=1, and D =
{(

(α(k), s′
(k)), s(k)

)}N

k=1

output: imputed value function V̂ (s)
begin

1. for each k = 1, . . . , N :

x(k) := (α(k), s′
(k)), p(k) := s(k),

Xk := {(α, s′) | s(k)
α

−→ s′},
define f(x, p(k)) := ℓ(s(k),α, s′) + V̂ (s′),

for all x = (α, s′) ∈ Xk

end for

2. solve convex optimization problem (5)
for an optimal weight θ⋆

3. return V̂ (s) =
∑M

i=1 θ
⋆
i φi(s)

end

Note that in the baseline algorithm, we are looking for an
optimal time-invariant strategy, ignoring any behavioral side
information; this would be expected in a classical applica-
tion of inverse optimal control or reward learning. We could
impute a general time-varying policy, however the number of
free parameters grows quickly with the number of timesteps,
and in most practical applications the time horizon is either
unknown or very large.

Next, we present the algorithm that incorporates behav-
ioral side information. Note that the differences from the
baseline are in the format of the training data, the avail-
ability of the behavioral specification automaton A, and the
“hybrid” (i.e., using the product state space S × Q) nature
of the imputed value function.

algorithm: inverse optimal control with side information
given: TS, A, Θ ⊆ R

M , ℓ : S ×Act× S → R, sf ∈ S,
{φi : S ×Q → R}Mi=1,

and D =
{(

(α(k), s′
(k)

, q′
(k)), (s(k), q(k))

)}N

k=1

output: imputed value function V̂ (s, q)
begin

1. for each k = 1, . . . , N :

x(k) := (α(k), s′
(k)

, q′
(k)), p(k) := (s(k), q(k)),

Xk := {(α, s′, q′) | s(k)
α

−→ s′, q′ ∈ δ(q(k), L(s(k)))},
define f(x, p(k)) := ℓ(s(k),α, s′) + V̂ (s′, q′),

for all x = (α, s′, q′) ∈ Xk

end for
2. solve convex optimization problem (5)

for an optimal weight θ⋆

3. return V̂ (s, q) =
∑M

i=1 θ
⋆
i φi(s, q)

end

4.2 Gridworld map
We use a 6-by-6 gridworld map for this experiment, as

shown in Figure 2. We assume that an agent placed on

Figure 2: Gridworld map and three expert demon-
strations (red: obstacles, green: goals, blue: initial
state, yellow: final state)

Learned policy:

start

end

B

A

start

end

B

A

V ?(s)

f(x, p) = `(s, s0) + V̂ (s0)

Task: get from start to end in the fewest steps, while visiting A and B in any order

imputed value function
has no memory

Ivan Papusha

Side information

25

Task: get from start to end in the fewest steps, while visiting A and B in any order

each square has four actions (up, down, left, right), and all
transitions are deterministic. If the agent is at a border
square and tries to move towards the border (e.g., move
upwards in the top row), the agent will not move. The blue
square is the initial state s0 and the yellow square is the
final goal state sf .

Behavioral demonstrations.
The agent must start from the blue square, pass the two

green squares (in any order) while avoiding all red squares,
and eventually go to the yellow square. Once it reaches the
yellow square, the task is complete. The transition system
has 36 states, and the specification automaton has 4 states.
Thus there are a total of 144 states in the product TS ⊗A,
and at each state, there are 4 available (deterministic) ac-
tions. We show the agent 3 different expert demonstrations
that satisfy the behavioral specification.

Reward model.
We use M = 5 different features as basis functions of the

action-value function, designed as in Table 1.

v6 The optimal state value function corresponding to
the stage cost function that gives 0 only when
the goal state (yellow block with final state q4) is
reached or at the final goal state, otherwise -1.

v7 The optimal state value function corresponding to
the reward function that gives 0 only when a new
intermediate state (green block) is reached or at
the final goal state, otherwise -1.

v8 The optimal state value function corresponding to
the reward function that gives 1 only when an ob-
stacle (red block) is reached, otherwise 0.

v4 The optimal state value function corresponding to
the stage cost function that gives 0 only at transi-
tions in the demonstration, otherwise 1.

v5 The optimal state value function corresponding to
the stage cost function that gives 1 to all transi-
tions.

Table 1: Design of basis functions φi, i = 1, . . . , 5.

4.3 Simulation without side information
In this case, the feature v7 corresponds to the stage cost

function, such that any transition that goes to a green block
has loss 0, otherwise 1. Using the baseline algorithm, the
learned weight vector is

θ = (1, 0,−2290.59, 6396.68,−1),

and the learned optimal non-deterministic strategy is shown
in Figure 3. Note that following the learned strategy an
agent can miss one green block before reaching the yellow
block, or even get stuck, depending on its initial off-policy
location.

4.4 Simulation with side information
In this case, the side information is given as the DFA

shown in Figure 4. Following the side information aware
algorithm, we obtain the learned weight vector

θ = (1,−0.36,−81.22, 230.76,−0.64),

Figure 3: Learned memoryless strategy without side
information. The strategy can miss one green block
before reaching the yellow block because of a lack of
task memory.

q0start

q1

q2

q3

p1

p2

¬p1 ∧ ¬p2
p2

¬p2

p1
¬p1

true

Figure 4: Side information: a DFA constructed for
the example. The atomic proposition p1 is true
whenever the agent is in the green block near the
yellow block, and p2 is true in the other green block.

which imputes the mode-dependent strategy shown in Fig-
ure 5. The task is successfully implemented with this strat-
egy, because the DFA is able to track which green squares
have been visited in which order, and whether it is possible
to move on to the yellow square.

5. CRITIQUES AND CONCLUSIONS
In this work, we presented a general framework for impos-

ing behavioral specifications on policies learned from expert
demonstrations. We showed that temporal side informa-
tion in the form of a specification automaton can be used
to effectively constrain the number of free parameters in an
inverse optimal control problem, allowing imputed policies
to have a task memory—rather then a time-based memory,
or no memory at all. It remains to be seen whether this
framework can be put to practical use in dynamically inter-
esting applications. Although we have treated the problem
entirely using deterministic finite-state transition systems
and policies, we can envision several extensions. The most
clear extension is to consider continuous dynamics, in which
case the policy is a hybrid policy over a mixed continuous-

Side information: a specification
automaton that every “optimal”
trajectory must satisfy.

At each time step the atomic
propositions p1 and p2 are evaluated

- p1 = true iff. the state is A
- p2 = true iff. the state is B

Side information automaton

A'

time
state

p1
p2

0 1 2 3 … t t+1
s1 s2 s3 s4 … st st+1
F F T F T F
F F F F T F

In the inverse problem, the side
information becomes a hidden state
with (known) evolution

Ivan Papusha

Data structures

26

Memoryless policy:

µ?
t (s) 2 argmin

{↵|s ↵�!s0}

�
`(s,↵, s0) + V ?

t+1(s
0)

µ?(s, q) 2 argmin
{↵|s ↵�!s0,q0=�(q,L(s))}

{`(s,↵, s0) + V ?(s0, q0)}

Mode-varying policy:

D =
n⇣

(↵(k), s0
(k)

, q0
(k)

), (s(k), q(k))
⌘

| k = 1, . . . , N
o

Expert data:

Ivan Papusha

Data structures

26

Memoryless policy:

µ?
t (s) 2 argmin

{↵|s ↵�!s0}

�
`(s,↵, s0) + V ?

t+1(s
0)

µ?(s, q) 2 argmin
{↵|s ↵�!s0,q0=�(q,L(s))}

{`(s,↵, s0) + V ?(s0, q0)}

Mode-varying policy:

optimizing process

D =
n⇣

(↵(k), s0
(k)

, q0
(k)

), (s(k), q(k))
⌘

| k = 1, . . . , N
o

Expert data:

Ivan Papusha

Data structures

26

Memoryless policy:

µ?
t (s) 2 argmin

{↵|s ↵�!s0}

�
`(s,↵, s0) + V ?

t+1(s
0)

µ?(s, q) 2 argmin
{↵|s ↵�!s0,q0=�(q,L(s))}

{`(s,↵, s0) + V ?(s0, q0)}

Mode-varying policy:

learned by IOC
optimizing process

D =
n⇣

(↵(k), s0
(k)

, q0
(k)

), (s(k), q(k))
⌘

| k = 1, . . . , N
o

Expert data:

Ivan Papusha

Data structures

26

Memoryless policy:

µ?
t (s) 2 argmin

{↵|s ↵�!s0}

�
`(s,↵, s0) + V ?

t+1(s
0)

µ?(s, q) 2 argmin
{↵|s ↵�!s0,q0=�(q,L(s))}

{`(s,↵, s0) + V ?(s0, q0)}

Mode-varying policy:

learned by IOC
optimizing process

D =
n⇣

(↵(k), s0
(k)

, q0
(k)

), (s(k), q(k))
⌘

| k = 1, . . . , N
o

Expert data:

x(k)

Ivan Papusha

Data structures

26

Memoryless policy:

µ?
t (s) 2 argmin

{↵|s ↵�!s0}

�
`(s,↵, s0) + V ?

t+1(s
0)

µ?(s, q) 2 argmin
{↵|s ↵�!s0,q0=�(q,L(s))}

{`(s,↵, s0) + V ?(s0, q0)}

Mode-varying policy:

learned by IOC
optimizing process

D =
n⇣

(↵(k), s0
(k)

, q0
(k)

), (s(k), q(k))
⌘

| k = 1, . . . , N
o

Expert data:

p(k)x(k)

Ivan Papusha

Data structures

26

Memoryless policy:

µ?
t (s) 2 argmin

{↵|s ↵�!s0}

�
`(s,↵, s0) + V ?

t+1(s
0)

µ?(s, q) 2 argmin
{↵|s ↵�!s0,q0=�(q,L(s))}

{`(s,↵, s0) + V ?(s0, q0)}

Mode-varying policy:

learned by IOC
optimizing process

D =
n⇣

(↵(k), s0
(k)

, q0
(k)

), (s(k), q(k))
⌘

| k = 1, . . . , N
o

Expert data:

p(k)x(k)

D =
n⇣

(↵(k), s0
(k)

), s(k)
⌘

| k = 1, . . . , N
o

compare to memoryless case:

Ivan Papusha

Side information-aware policy has memory

27

Expert demonstrations:

a breakdown of the dynamic programming principle,
because the stage cost plus cost-to-go can be made
smaller by choosing x instead of x(k),

ℓ(s,α, s′) + V̂ (s′) < ℓ(s,α(k), s′
(k)

) + V̂ (s′
(k)

).

In this case, either the value function V̂ (and hence
θ) is wrong, or the “optimal” demonstration x(k) is a
mistake. The objective in (5) remains agnostic to these
alternatives by penalizing, through each term

max
x∈Xk

{

(

−r(k)cons(x, θ)
)

+

}

= max
α,s′

{

max(0, ℓ(s,α(k), s′
(k)

) + V̂θ(s
′(k))

− ℓ(s,α, s′)− V̂θ(s
′))

}

the worst-case “regret” of a policy choosing a state-
action (α, s′) at s(k) instead of (α(k), s′

(k)). Here, we
write V̂θ to make explicit the dependence of the im-
puted value function on the weights θ to be deter-
mined.

We can interpret the objective in (5) as a game be-
tween a rational expert providing (through D) optimal
state-action pairs, and a student, who tries to approxi-
mate the expert’s policy by looking at examples where
the two differ on the choice of optimal action. Wher-
ever they differ, the student tries to make the difference
in imputed cost small.

Other measures of inconsistency between the expert
and the student are possible depending on the broad
dynamics setting. For example, if the dynamics are
stochastic, we can minimize the expected regret, or
maximize the likelihood of the observed data [9].

4. VALUE OF SIDE INFORMATION

4.1 Fair comparison
Returning to our original motivation, we ask the ques-

tion: can side information, provided as temporal behavior
constraints that optimal runs of the transition system must
satisfy, be used to our advantage when attempting to re-
cover the stage cost function from expert training data? We
argue that the answer is yes. The specific value of the tem-
poral side information is in providing a task-level, instead of
a time-based, memory.
To illustrate, we compare an implementation of baseline

inverse optimal control to inverse optimal control with avail-
able temporal behavior side information.

algorithm: baseline inverse optimal control
given: TS, Θ ⊆ R

M , ℓ : S ×Act× S → R, sf ∈ S,

{φi : S → R}Mi=1, and D =
{(

(α(k), s′
(k)), s(k)

)}N

k=1

output: imputed value function V̂ (s)
begin

1. for each k = 1, . . . , N :

x(k) := (α(k), s′
(k)), p(k) := s(k),

Xk := {(α, s′) | s(k)
α

−→ s′},
define f(x, p(k)) := ℓ(s(k),α, s′) + V̂ (s′),

for all x = (α, s′) ∈ Xk

end for

2. solve convex optimization problem (5)
for an optimal weight θ⋆

3. return V̂ (s) =
∑M

i=1 θ
⋆
i φi(s)

end

Note that in the baseline algorithm, we are looking for an
optimal time-invariant strategy, ignoring any behavioral side
information; this would be expected in a classical applica-
tion of inverse optimal control or reward learning. We could
impute a general time-varying policy, however the number of
free parameters grows quickly with the number of timesteps,
and in most practical applications the time horizon is either
unknown or very large.

Next, we present the algorithm that incorporates behav-
ioral side information. Note that the differences from the
baseline are in the format of the training data, the avail-
ability of the behavioral specification automaton A, and the
“hybrid” (i.e., using the product state space S × Q) nature
of the imputed value function.

algorithm: inverse optimal control with side information
given: TS, A, Θ ⊆ R

M , ℓ : S ×Act× S → R, sf ∈ S,
{φi : S ×Q → R}Mi=1,

and D =
{(

(α(k), s′
(k)

, q′
(k)), (s(k), q(k))

)}N

k=1

output: imputed value function V̂ (s, q)
begin

1. for each k = 1, . . . , N :

x(k) := (α(k), s′
(k)

, q′
(k)), p(k) := (s(k), q(k)),

Xk := {(α, s′, q′) | s(k)
α

−→ s′, q′ ∈ δ(q(k), L(s(k)))},
define f(x, p(k)) := ℓ(s(k),α, s′) + V̂ (s′, q′),

for all x = (α, s′, q′) ∈ Xk

end for
2. solve convex optimization problem (5)

for an optimal weight θ⋆

3. return V̂ (s, q) =
∑M

i=1 θ
⋆
i φi(s, q)

end

4.2 Gridworld map
We use a 6-by-6 gridworld map for this experiment, as

shown in Figure 2. We assume that an agent placed on

Figure 2: Gridworld map and three expert demon-
strations (red: obstacles, green: goals, blue: initial
state, yellow: final state)

start

end

B

A

(a) q = q0 (b) q = q1

(c) q = q2 (d) q = q3

Figure 5: Learned strategy with side information

(dynamics) discrete- (behavior automaton) space [16]. By
choosing to present discrete transition system dynamics, we
have sidestepped the important technicalities of hybrid sys-
tems. Our choice in this respect was deliberate—it allowed
us to study the value of temporal side information without
technical distractions. Another clear direction is to rewrite
the the dynamics as a Markov decision process, and allow
for randomized (instead of deterministic) imputed policies.
With this modeling choice, we can perhaps better interpret
inconsistent demonstrations in Bayesian or maximum likeli-
hood frameworks, e.g., [9].
Key challenges still remain both in scalability and practi-

cality. We showed a fairly small gridworld example; however
it is well known that automaton size grows at least exponen-
tially with the size of a regular expression or temporal logic
formula that defines it. Furthermore, since the specification
automaton must be deterministic, another exponential fac-
tor must be added to determinize useful specifications. We
invite the reader to imagine the size of a gridworld spec-
ification automaton encoding the side information that a
traveling salesman problem must be solved. Thus while it
may be beneficial to use a task-level encoding in some cases,
we might still be forced to look for a memoryless or time-
parameterized strategy in others.

6. ACKNOWLEDGMENTS
This work was supported in part by AFRL FA8650-15-C-

2546, ONR N000141310778, ARO W911NF-15-1-0592, NSF
1550212, DARPA W911NF-16-1-0001, and ONR N00014-
15-IP-00052.

7. REFERENCES

[1] P. Abbeel, A. Coates, and A. Y. Ng. Autonomous
helicopter aerobatics through apprenticeship learning.

International Journal of Robotics Research,
29(13):1608–1639, June 2010.

[2] P. Abbeel and A. Y. Ng. Apprenticeship learning via
inverse reinforcement learning. In International
Conference on Machine Learning (ICML), page 1.
ACM, 2004.

[3] K. J. Arrow. A difficulty in the concept of social
welfare. Journal of Political Economy, 58(4):328–346,
1950.

[4] C. Baier and J.-P. Katoen. Principles of Model
Checking. Representation and Mind. MIT Press, 2008.

[5] C. L. Baker, J. B. Tenenbaum, and R. R. Saxe. Goal
inference as inverse planning. In Conference of the
Cognitive Science Society (CogSci), 2007.

[6] D. P. Bertsekas. Dynamic Programming and Optimal
Control, volume I and II. Athena Scientific, 3rd
edition, 2005.

[7] D. P. Bertsekas and J. N. Tsitsiklis. Neuro-Dynamic
Programming. Athena Scientific, 1996.

[8] S. P. Boyd, L. El Ghaoui, E. Feron, and
V. Balakrishnan. Linear Matrix Inequalities in System
and Control Theory, volume 15 of Studies in Applied
and Numerical Mathematics. Society for Industrial
and Applied Mathematics, 1994.

[9] K. Dvijotham and E. Todorov. Inverse optimal control
with linearly-solvable MDPs. In International
Conference on Machine learning (ICML), pages
335–342, 2010.

[10] C. Dwork, R. Kumar, M. Naor, and D. Sivakumar.
Rank aggregation methods for the web. In
International Conference on World Wide Web
(WWW), pages 613–622. ACM, 2001.

[11] R. E. Kalman. When is a linear control system
optimal? Journal of Basic Engineering, 86(1):51–60,
Mar. 1964.

[12] A. Keshavarz, Y. Wang, and S. Boyd. Imputing a
convex objective function. In IEEE International
Symposium on Intelligent Control (ISIC), pages
613–619, Sept. 2011. Part of IEEE Multi-Conference
on Systems and Control (MSC).

[13] O. Kupferman and M. Y. Vardi. Model checking of
safety properties. Formal Methods in System Design,
19(3):291–314, 2001.

[14] T. Latvala. Efficient model checking of safety
properties. In T. Ball and S. K. Rajamani, editors,
International SPIN Workshop on Model Checking of
Software, volume 2648 of Lecture Notes in Computer
Science, pages 74–88. Springer, 2003.

[15] A. Y. Ng and S. J. Russell. Algorithms for inverse
reinforcement learning. In International Conference on
Machine Learning (ICML), pages 663–670, 2000.

[16] I. Papusha, J. Fu, U. Topcu, and R. M. Murray.
Automata theory meets approximate dynamic
programming: Optimal control with temporal logic
constraints. In IEEE Conference on Decision and
Control (CDC), to appear, 2016.

[17] N. D. Ratliff, J. A. Bagnell, and M. A. Zinkevich.
Maximum margin planning. In International
Conference on Machine learning (ICML), pages
729–736. ACM, 2006.

[18] M. Sipser. Introduction to the Theory of Computation.

each square has four actions (up, down, left, right), and all
transitions are deterministic. If the agent is at a border
square and tries to move towards the border (e.g., move
upwards in the top row), the agent will not move. The blue
square is the initial state s0 and the yellow square is the
final goal state sf .

Behavioral demonstrations.
The agent must start from the blue square, pass the two

green squares (in any order) while avoiding all red squares,
and eventually go to the yellow square. Once it reaches the
yellow square, the task is complete. The transition system
has 36 states, and the specification automaton has 4 states.
Thus there are a total of 144 states in the product TS ⊗A,
and at each state, there are 4 available (deterministic) ac-
tions. We show the agent 3 different expert demonstrations
that satisfy the behavioral specification.

Reward model.
We use M = 5 different features as basis functions of the

action-value function, designed as in Table 1.

v6 The optimal state value function corresponding to
the stage cost function that gives 0 only when
the goal state (yellow block with final state q4) is
reached or at the final goal state, otherwise -1.

v7 The optimal state value function corresponding to
the reward function that gives 0 only when a new
intermediate state (green block) is reached or at
the final goal state, otherwise -1.

v8 The optimal state value function corresponding to
the reward function that gives 1 only when an ob-
stacle (red block) is reached, otherwise 0.

v4 The optimal state value function corresponding to
the stage cost function that gives 0 only at transi-
tions in the demonstration, otherwise 1.

v5 The optimal state value function corresponding to
the stage cost function that gives 1 to all transi-
tions.

Table 1: Design of basis functions φi, i = 1, . . . , 5.

4.3 Simulation without side information
In this case, the feature v7 corresponds to the stage cost

function, such that any transition that goes to a green block
has loss 0, otherwise 1. Using the baseline algorithm, the
learned weight vector is

θ = (1, 0,−2290.59, 6396.68,−1),

and the learned optimal non-deterministic strategy is shown
in Figure 3. Note that following the learned strategy an
agent can miss one green block before reaching the yellow
block, or even get stuck, depending on its initial off-policy
location.

4.4 Simulation with side information
In this case, the side information is given as the DFA

shown in Figure 4. Following the side information aware
algorithm, we obtain the learned weight vector

θ = (1,−0.36,−81.22, 230.76,−0.64),

Figure 3: Learned memoryless strategy without side
information. The strategy can miss one green block
before reaching the yellow block because of a lack of
task memory.

q0start

q1

q2

q3

p1

p2

¬p1 ∧ ¬p2
p2

¬p2

p1
¬p1

true

Figure 4: Side information: a DFA constructed for
the example. The atomic proposition p1 is true
whenever the agent is in the green block near the
yellow block, and p2 is true in the other green block.

which imputes the mode-dependent strategy shown in Fig-
ure 5. The task is successfully implemented with this strat-
egy, because the DFA is able to track which green squares
have been visited in which order, and whether it is possible
to move on to the yellow square.

5. CRITIQUES AND CONCLUSIONS
In this work, we presented a general framework for impos-

ing behavioral specifications on policies learned from expert
demonstrations. We showed that temporal side informa-
tion in the form of a specification automaton can be used
to effectively constrain the number of free parameters in an
inverse optimal control problem, allowing imputed policies
to have a task memory—rather then a time-based memory,
or no memory at all. It remains to be seen whether this
framework can be put to practical use in dynamically inter-
esting applications. Although we have treated the problem
entirely using deterministic finite-state transition systems
and policies, we can envision several extensions. The most
clear extension is to consider continuous dynamics, in which
case the policy is a hybrid policy over a mixed continuous-

A'

Side information:

Learned policy:

Ivan Papusha

Side information-aware policy has memory

27

Expert demonstrations:

a breakdown of the dynamic programming principle,
because the stage cost plus cost-to-go can be made
smaller by choosing x instead of x(k),

ℓ(s,α, s′) + V̂ (s′) < ℓ(s,α(k), s′
(k)

) + V̂ (s′
(k)

).

In this case, either the value function V̂ (and hence
θ) is wrong, or the “optimal” demonstration x(k) is a
mistake. The objective in (5) remains agnostic to these
alternatives by penalizing, through each term

max
x∈Xk

{

(

−r(k)cons(x, θ)
)

+

}

= max
α,s′

{

max(0, ℓ(s,α(k), s′
(k)

) + V̂θ(s
′(k))

− ℓ(s,α, s′)− V̂θ(s
′))

}

the worst-case “regret” of a policy choosing a state-
action (α, s′) at s(k) instead of (α(k), s′

(k)). Here, we
write V̂θ to make explicit the dependence of the im-
puted value function on the weights θ to be deter-
mined.

We can interpret the objective in (5) as a game be-
tween a rational expert providing (through D) optimal
state-action pairs, and a student, who tries to approxi-
mate the expert’s policy by looking at examples where
the two differ on the choice of optimal action. Wher-
ever they differ, the student tries to make the difference
in imputed cost small.

Other measures of inconsistency between the expert
and the student are possible depending on the broad
dynamics setting. For example, if the dynamics are
stochastic, we can minimize the expected regret, or
maximize the likelihood of the observed data [9].

4. VALUE OF SIDE INFORMATION

4.1 Fair comparison
Returning to our original motivation, we ask the ques-

tion: can side information, provided as temporal behavior
constraints that optimal runs of the transition system must
satisfy, be used to our advantage when attempting to re-
cover the stage cost function from expert training data? We
argue that the answer is yes. The specific value of the tem-
poral side information is in providing a task-level, instead of
a time-based, memory.
To illustrate, we compare an implementation of baseline

inverse optimal control to inverse optimal control with avail-
able temporal behavior side information.

algorithm: baseline inverse optimal control
given: TS, Θ ⊆ R

M , ℓ : S ×Act× S → R, sf ∈ S,

{φi : S → R}Mi=1, and D =
{(

(α(k), s′
(k)), s(k)

)}N

k=1

output: imputed value function V̂ (s)
begin

1. for each k = 1, . . . , N :

x(k) := (α(k), s′
(k)), p(k) := s(k),

Xk := {(α, s′) | s(k)
α

−→ s′},
define f(x, p(k)) := ℓ(s(k),α, s′) + V̂ (s′),

for all x = (α, s′) ∈ Xk

end for

2. solve convex optimization problem (5)
for an optimal weight θ⋆

3. return V̂ (s) =
∑M

i=1 θ
⋆
i φi(s)

end

Note that in the baseline algorithm, we are looking for an
optimal time-invariant strategy, ignoring any behavioral side
information; this would be expected in a classical applica-
tion of inverse optimal control or reward learning. We could
impute a general time-varying policy, however the number of
free parameters grows quickly with the number of timesteps,
and in most practical applications the time horizon is either
unknown or very large.

Next, we present the algorithm that incorporates behav-
ioral side information. Note that the differences from the
baseline are in the format of the training data, the avail-
ability of the behavioral specification automaton A, and the
“hybrid” (i.e., using the product state space S × Q) nature
of the imputed value function.

algorithm: inverse optimal control with side information
given: TS, A, Θ ⊆ R

M , ℓ : S ×Act× S → R, sf ∈ S,
{φi : S ×Q → R}Mi=1,

and D =
{(

(α(k), s′
(k)

, q′
(k)), (s(k), q(k))

)}N

k=1

output: imputed value function V̂ (s, q)
begin

1. for each k = 1, . . . , N :

x(k) := (α(k), s′
(k)

, q′
(k)), p(k) := (s(k), q(k)),

Xk := {(α, s′, q′) | s(k)
α

−→ s′, q′ ∈ δ(q(k), L(s(k)))},
define f(x, p(k)) := ℓ(s(k),α, s′) + V̂ (s′, q′),

for all x = (α, s′, q′) ∈ Xk

end for
2. solve convex optimization problem (5)

for an optimal weight θ⋆

3. return V̂ (s, q) =
∑M

i=1 θ
⋆
i φi(s, q)

end

4.2 Gridworld map
We use a 6-by-6 gridworld map for this experiment, as

shown in Figure 2. We assume that an agent placed on

Figure 2: Gridworld map and three expert demon-
strations (red: obstacles, green: goals, blue: initial
state, yellow: final state)

start

end

B

A

(a) q = q0 (b) q = q1

(c) q = q2 (d) q = q3

each square has four actions (up, down, left, right), and all
transitions are deterministic. If the agent is at a border
square and tries to move towards the border (e.g., move
upwards in the top row), the agent will not move. The blue
square is the initial state s0 and the yellow square is the
final goal state sf .

Behavioral demonstrations.
The agent must start from the blue square, pass the two

green squares (in any order) while avoiding all red squares,
and eventually go to the yellow square. Once it reaches the
yellow square, the task is complete. The transition system
has 36 states, and the specification automaton has 4 states.
Thus there are a total of 144 states in the product TS ⊗A,
and at each state, there are 4 available (deterministic) ac-
tions. We show the agent 3 different expert demonstrations
that satisfy the behavioral specification.

Reward model.
We use M = 5 different features as basis functions of the

action-value function, designed as in Table 1.

v6 The optimal state value function corresponding to
the stage cost function that gives 0 only when
the goal state (yellow block with final state q4) is
reached or at the final goal state, otherwise -1.

v7 The optimal state value function corresponding to
the reward function that gives 0 only when a new
intermediate state (green block) is reached or at
the final goal state, otherwise -1.

v8 The optimal state value function corresponding to
the reward function that gives 1 only when an ob-
stacle (red block) is reached, otherwise 0.

v4 The optimal state value function corresponding to
the stage cost function that gives 0 only at transi-
tions in the demonstration, otherwise 1.

v5 The optimal state value function corresponding to
the stage cost function that gives 1 to all transi-
tions.

Table 1: Design of basis functions φi, i = 1, . . . , 5.

4.3 Simulation without side information
In this case, the feature v7 corresponds to the stage cost

function, such that any transition that goes to a green block
has loss 0, otherwise 1. Using the baseline algorithm, the
learned weight vector is

θ = (1, 0,−2290.59, 6396.68,−1),

and the learned optimal non-deterministic strategy is shown
in Figure 3. Note that following the learned strategy an
agent can miss one green block before reaching the yellow
block, or even get stuck, depending on its initial off-policy
location.

4.4 Simulation with side information
In this case, the side information is given as the DFA

shown in Figure 4. Following the side information aware
algorithm, we obtain the learned weight vector

θ = (1,−0.36,−81.22, 230.76,−0.64),

Figure 3: Learned memoryless strategy without side
information. The strategy can miss one green block
before reaching the yellow block because of a lack of
task memory.

q0start

q1

q2

q3

p1

p2

¬p1 ∧ ¬p2
p2

¬p2

p1
¬p1

true

Figure 4: Side information: a DFA constructed for
the example. The atomic proposition p1 is true
whenever the agent is in the green block near the
yellow block, and p2 is true in the other green block.

which imputes the mode-dependent strategy shown in Fig-
ure 5. The task is successfully implemented with this strat-
egy, because the DFA is able to track which green squares
have been visited in which order, and whether it is possible
to move on to the yellow square.

5. CRITIQUES AND CONCLUSIONS
In this work, we presented a general framework for impos-

ing behavioral specifications on policies learned from expert
demonstrations. We showed that temporal side informa-
tion in the form of a specification automaton can be used
to effectively constrain the number of free parameters in an
inverse optimal control problem, allowing imputed policies
to have a task memory—rather then a time-based memory,
or no memory at all. It remains to be seen whether this
framework can be put to practical use in dynamically inter-
esting applications. Although we have treated the problem
entirely using deterministic finite-state transition systems
and policies, we can envision several extensions. The most
clear extension is to consider continuous dynamics, in which
case the policy is a hybrid policy over a mixed continuous-

A'

Side information:

Learned policy:

Ivan Papusha

Side information-aware policy has memory

27

Expert demonstrations:

a breakdown of the dynamic programming principle,
because the stage cost plus cost-to-go can be made
smaller by choosing x instead of x(k),

ℓ(s,α, s′) + V̂ (s′) < ℓ(s,α(k), s′
(k)

) + V̂ (s′
(k)

).

In this case, either the value function V̂ (and hence
θ) is wrong, or the “optimal” demonstration x(k) is a
mistake. The objective in (5) remains agnostic to these
alternatives by penalizing, through each term

max
x∈Xk

{

(

−r(k)cons(x, θ)
)

+

}

= max
α,s′

{

max(0, ℓ(s,α(k), s′
(k)

) + V̂θ(s
′(k))

− ℓ(s,α, s′)− V̂θ(s
′))

}

the worst-case “regret” of a policy choosing a state-
action (α, s′) at s(k) instead of (α(k), s′

(k)). Here, we
write V̂θ to make explicit the dependence of the im-
puted value function on the weights θ to be deter-
mined.

We can interpret the objective in (5) as a game be-
tween a rational expert providing (through D) optimal
state-action pairs, and a student, who tries to approxi-
mate the expert’s policy by looking at examples where
the two differ on the choice of optimal action. Wher-
ever they differ, the student tries to make the difference
in imputed cost small.

Other measures of inconsistency between the expert
and the student are possible depending on the broad
dynamics setting. For example, if the dynamics are
stochastic, we can minimize the expected regret, or
maximize the likelihood of the observed data [9].

4. VALUE OF SIDE INFORMATION

4.1 Fair comparison
Returning to our original motivation, we ask the ques-

tion: can side information, provided as temporal behavior
constraints that optimal runs of the transition system must
satisfy, be used to our advantage when attempting to re-
cover the stage cost function from expert training data? We
argue that the answer is yes. The specific value of the tem-
poral side information is in providing a task-level, instead of
a time-based, memory.
To illustrate, we compare an implementation of baseline

inverse optimal control to inverse optimal control with avail-
able temporal behavior side information.

algorithm: baseline inverse optimal control
given: TS, Θ ⊆ R

M , ℓ : S ×Act× S → R, sf ∈ S,

{φi : S → R}Mi=1, and D =
{(

(α(k), s′
(k)), s(k)

)}N

k=1

output: imputed value function V̂ (s)
begin

1. for each k = 1, . . . , N :

x(k) := (α(k), s′
(k)), p(k) := s(k),

Xk := {(α, s′) | s(k)
α

−→ s′},
define f(x, p(k)) := ℓ(s(k),α, s′) + V̂ (s′),

for all x = (α, s′) ∈ Xk

end for

2. solve convex optimization problem (5)
for an optimal weight θ⋆

3. return V̂ (s) =
∑M

i=1 θ
⋆
i φi(s)

end

Note that in the baseline algorithm, we are looking for an
optimal time-invariant strategy, ignoring any behavioral side
information; this would be expected in a classical applica-
tion of inverse optimal control or reward learning. We could
impute a general time-varying policy, however the number of
free parameters grows quickly with the number of timesteps,
and in most practical applications the time horizon is either
unknown or very large.

Next, we present the algorithm that incorporates behav-
ioral side information. Note that the differences from the
baseline are in the format of the training data, the avail-
ability of the behavioral specification automaton A, and the
“hybrid” (i.e., using the product state space S × Q) nature
of the imputed value function.

algorithm: inverse optimal control with side information
given: TS, A, Θ ⊆ R

M , ℓ : S ×Act× S → R, sf ∈ S,
{φi : S ×Q → R}Mi=1,

and D =
{(

(α(k), s′
(k)

, q′
(k)), (s(k), q(k))

)}N

k=1

output: imputed value function V̂ (s, q)
begin

1. for each k = 1, . . . , N :

x(k) := (α(k), s′
(k)

, q′
(k)), p(k) := (s(k), q(k)),

Xk := {(α, s′, q′) | s(k)
α

−→ s′, q′ ∈ δ(q(k), L(s(k)))},
define f(x, p(k)) := ℓ(s(k),α, s′) + V̂ (s′, q′),

for all x = (α, s′, q′) ∈ Xk

end for
2. solve convex optimization problem (5)

for an optimal weight θ⋆

3. return V̂ (s, q) =
∑M

i=1 θ
⋆
i φi(s, q)

end

4.2 Gridworld map
We use a 6-by-6 gridworld map for this experiment, as

shown in Figure 2. We assume that an agent placed on

Figure 2: Gridworld map and three expert demon-
strations (red: obstacles, green: goals, blue: initial
state, yellow: final state)

start

end

B

A

(a) q = q0 (b) q = q1

(c) q = q2 (d) q = q3

each square has four actions (up, down, left, right), and all
transitions are deterministic. If the agent is at a border
square and tries to move towards the border (e.g., move
upwards in the top row), the agent will not move. The blue
square is the initial state s0 and the yellow square is the
final goal state sf .

Behavioral demonstrations.
The agent must start from the blue square, pass the two

green squares (in any order) while avoiding all red squares,
and eventually go to the yellow square. Once it reaches the
yellow square, the task is complete. The transition system
has 36 states, and the specification automaton has 4 states.
Thus there are a total of 144 states in the product TS ⊗A,
and at each state, there are 4 available (deterministic) ac-
tions. We show the agent 3 different expert demonstrations
that satisfy the behavioral specification.

Reward model.
We use M = 5 different features as basis functions of the

action-value function, designed as in Table 1.

v6 The optimal state value function corresponding to
the stage cost function that gives 0 only when
the goal state (yellow block with final state q4) is
reached or at the final goal state, otherwise -1.

v7 The optimal state value function corresponding to
the reward function that gives 0 only when a new
intermediate state (green block) is reached or at
the final goal state, otherwise -1.

v8 The optimal state value function corresponding to
the reward function that gives 1 only when an ob-
stacle (red block) is reached, otherwise 0.

v4 The optimal state value function corresponding to
the stage cost function that gives 0 only at transi-
tions in the demonstration, otherwise 1.

v5 The optimal state value function corresponding to
the stage cost function that gives 1 to all transi-
tions.

Table 1: Design of basis functions φi, i = 1, . . . , 5.

4.3 Simulation without side information
In this case, the feature v7 corresponds to the stage cost

function, such that any transition that goes to a green block
has loss 0, otherwise 1. Using the baseline algorithm, the
learned weight vector is

θ = (1, 0,−2290.59, 6396.68,−1),

and the learned optimal non-deterministic strategy is shown
in Figure 3. Note that following the learned strategy an
agent can miss one green block before reaching the yellow
block, or even get stuck, depending on its initial off-policy
location.

4.4 Simulation with side information
In this case, the side information is given as the DFA

shown in Figure 4. Following the side information aware
algorithm, we obtain the learned weight vector

θ = (1,−0.36,−81.22, 230.76,−0.64),

Figure 3: Learned memoryless strategy without side
information. The strategy can miss one green block
before reaching the yellow block because of a lack of
task memory.

q0start

q1

q2

q3

p1

p2

¬p1 ∧ ¬p2
p2

¬p2

p1
¬p1

true

Figure 4: Side information: a DFA constructed for
the example. The atomic proposition p1 is true
whenever the agent is in the green block near the
yellow block, and p2 is true in the other green block.

which imputes the mode-dependent strategy shown in Fig-
ure 5. The task is successfully implemented with this strat-
egy, because the DFA is able to track which green squares
have been visited in which order, and whether it is possible
to move on to the yellow square.

5. CRITIQUES AND CONCLUSIONS
In this work, we presented a general framework for impos-

ing behavioral specifications on policies learned from expert
demonstrations. We showed that temporal side informa-
tion in the form of a specification automaton can be used
to effectively constrain the number of free parameters in an
inverse optimal control problem, allowing imputed policies
to have a task memory—rather then a time-based memory,
or no memory at all. It remains to be seen whether this
framework can be put to practical use in dynamically inter-
esting applications. Although we have treated the problem
entirely using deterministic finite-state transition systems
and policies, we can envision several extensions. The most
clear extension is to consider continuous dynamics, in which
case the policy is a hybrid policy over a mixed continuous-

A'

Side information:

Learned policy:

Ivan Papusha

Side information-aware policy has memory

27

Expert demonstrations:

a breakdown of the dynamic programming principle,
because the stage cost plus cost-to-go can be made
smaller by choosing x instead of x(k),

ℓ(s,α, s′) + V̂ (s′) < ℓ(s,α(k), s′
(k)

) + V̂ (s′
(k)

).

In this case, either the value function V̂ (and hence
θ) is wrong, or the “optimal” demonstration x(k) is a
mistake. The objective in (5) remains agnostic to these
alternatives by penalizing, through each term

max
x∈Xk

{

(

−r(k)cons(x, θ)
)

+

}

= max
α,s′

{

max(0, ℓ(s,α(k), s′
(k)

) + V̂θ(s
′(k))

− ℓ(s,α, s′)− V̂θ(s
′))

}

the worst-case “regret” of a policy choosing a state-
action (α, s′) at s(k) instead of (α(k), s′

(k)). Here, we
write V̂θ to make explicit the dependence of the im-
puted value function on the weights θ to be deter-
mined.

We can interpret the objective in (5) as a game be-
tween a rational expert providing (through D) optimal
state-action pairs, and a student, who tries to approxi-
mate the expert’s policy by looking at examples where
the two differ on the choice of optimal action. Wher-
ever they differ, the student tries to make the difference
in imputed cost small.

Other measures of inconsistency between the expert
and the student are possible depending on the broad
dynamics setting. For example, if the dynamics are
stochastic, we can minimize the expected regret, or
maximize the likelihood of the observed data [9].

4. VALUE OF SIDE INFORMATION

4.1 Fair comparison
Returning to our original motivation, we ask the ques-

tion: can side information, provided as temporal behavior
constraints that optimal runs of the transition system must
satisfy, be used to our advantage when attempting to re-
cover the stage cost function from expert training data? We
argue that the answer is yes. The specific value of the tem-
poral side information is in providing a task-level, instead of
a time-based, memory.
To illustrate, we compare an implementation of baseline

inverse optimal control to inverse optimal control with avail-
able temporal behavior side information.

algorithm: baseline inverse optimal control
given: TS, Θ ⊆ R

M , ℓ : S ×Act× S → R, sf ∈ S,

{φi : S → R}Mi=1, and D =
{(

(α(k), s′
(k)), s(k)

)}N

k=1

output: imputed value function V̂ (s)
begin

1. for each k = 1, . . . , N :

x(k) := (α(k), s′
(k)), p(k) := s(k),

Xk := {(α, s′) | s(k)
α

−→ s′},
define f(x, p(k)) := ℓ(s(k),α, s′) + V̂ (s′),

for all x = (α, s′) ∈ Xk

end for

2. solve convex optimization problem (5)
for an optimal weight θ⋆

3. return V̂ (s) =
∑M

i=1 θ
⋆
i φi(s)

end

Note that in the baseline algorithm, we are looking for an
optimal time-invariant strategy, ignoring any behavioral side
information; this would be expected in a classical applica-
tion of inverse optimal control or reward learning. We could
impute a general time-varying policy, however the number of
free parameters grows quickly with the number of timesteps,
and in most practical applications the time horizon is either
unknown or very large.

Next, we present the algorithm that incorporates behav-
ioral side information. Note that the differences from the
baseline are in the format of the training data, the avail-
ability of the behavioral specification automaton A, and the
“hybrid” (i.e., using the product state space S × Q) nature
of the imputed value function.

algorithm: inverse optimal control with side information
given: TS, A, Θ ⊆ R

M , ℓ : S ×Act× S → R, sf ∈ S,
{φi : S ×Q → R}Mi=1,

and D =
{(

(α(k), s′
(k)

, q′
(k)), (s(k), q(k))

)}N

k=1

output: imputed value function V̂ (s, q)
begin

1. for each k = 1, . . . , N :

x(k) := (α(k), s′
(k)

, q′
(k)), p(k) := (s(k), q(k)),

Xk := {(α, s′, q′) | s(k)
α

−→ s′, q′ ∈ δ(q(k), L(s(k)))},
define f(x, p(k)) := ℓ(s(k),α, s′) + V̂ (s′, q′),

for all x = (α, s′, q′) ∈ Xk

end for
2. solve convex optimization problem (5)

for an optimal weight θ⋆

3. return V̂ (s, q) =
∑M

i=1 θ
⋆
i φi(s, q)

end

4.2 Gridworld map
We use a 6-by-6 gridworld map for this experiment, as

shown in Figure 2. We assume that an agent placed on

Figure 2: Gridworld map and three expert demon-
strations (red: obstacles, green: goals, blue: initial
state, yellow: final state)

start

end

B

A

(a) q = q0 (b) q = q1

(c) q = q2 (d) q = q3

each square has four actions (up, down, left, right), and all
transitions are deterministic. If the agent is at a border
square and tries to move towards the border (e.g., move
upwards in the top row), the agent will not move. The blue
square is the initial state s0 and the yellow square is the
final goal state sf .

Behavioral demonstrations.
The agent must start from the blue square, pass the two

green squares (in any order) while avoiding all red squares,
and eventually go to the yellow square. Once it reaches the
yellow square, the task is complete. The transition system
has 36 states, and the specification automaton has 4 states.
Thus there are a total of 144 states in the product TS ⊗A,
and at each state, there are 4 available (deterministic) ac-
tions. We show the agent 3 different expert demonstrations
that satisfy the behavioral specification.

Reward model.
We use M = 5 different features as basis functions of the

action-value function, designed as in Table 1.

v6 The optimal state value function corresponding to
the stage cost function that gives 0 only when
the goal state (yellow block with final state q4) is
reached or at the final goal state, otherwise -1.

v7 The optimal state value function corresponding to
the reward function that gives 0 only when a new
intermediate state (green block) is reached or at
the final goal state, otherwise -1.

v8 The optimal state value function corresponding to
the reward function that gives 1 only when an ob-
stacle (red block) is reached, otherwise 0.

v4 The optimal state value function corresponding to
the stage cost function that gives 0 only at transi-
tions in the demonstration, otherwise 1.

v5 The optimal state value function corresponding to
the stage cost function that gives 1 to all transi-
tions.

Table 1: Design of basis functions φi, i = 1, . . . , 5.

4.3 Simulation without side information
In this case, the feature v7 corresponds to the stage cost

function, such that any transition that goes to a green block
has loss 0, otherwise 1. Using the baseline algorithm, the
learned weight vector is

θ = (1, 0,−2290.59, 6396.68,−1),

and the learned optimal non-deterministic strategy is shown
in Figure 3. Note that following the learned strategy an
agent can miss one green block before reaching the yellow
block, or even get stuck, depending on its initial off-policy
location.

4.4 Simulation with side information
In this case, the side information is given as the DFA

shown in Figure 4. Following the side information aware
algorithm, we obtain the learned weight vector

θ = (1,−0.36,−81.22, 230.76,−0.64),

Figure 3: Learned memoryless strategy without side
information. The strategy can miss one green block
before reaching the yellow block because of a lack of
task memory.

q0start

q1

q2

q3

p1

p2

¬p1 ∧ ¬p2
p2

¬p2

p1
¬p1

true

Figure 4: Side information: a DFA constructed for
the example. The atomic proposition p1 is true
whenever the agent is in the green block near the
yellow block, and p2 is true in the other green block.

which imputes the mode-dependent strategy shown in Fig-
ure 5. The task is successfully implemented with this strat-
egy, because the DFA is able to track which green squares
have been visited in which order, and whether it is possible
to move on to the yellow square.

5. CRITIQUES AND CONCLUSIONS
In this work, we presented a general framework for impos-

ing behavioral specifications on policies learned from expert
demonstrations. We showed that temporal side informa-
tion in the form of a specification automaton can be used
to effectively constrain the number of free parameters in an
inverse optimal control problem, allowing imputed policies
to have a task memory—rather then a time-based memory,
or no memory at all. It remains to be seen whether this
framework can be put to practical use in dynamically inter-
esting applications. Although we have treated the problem
entirely using deterministic finite-state transition systems
and policies, we can envision several extensions. The most
clear extension is to consider continuous dynamics, in which
case the policy is a hybrid policy over a mixed continuous-

A'

Side information:

Learned policy:

Ivan Papusha

Side information-aware policy has memory

27

Expert demonstrations:

a breakdown of the dynamic programming principle,
because the stage cost plus cost-to-go can be made
smaller by choosing x instead of x(k),

ℓ(s,α, s′) + V̂ (s′) < ℓ(s,α(k), s′
(k)

) + V̂ (s′
(k)

).

In this case, either the value function V̂ (and hence
θ) is wrong, or the “optimal” demonstration x(k) is a
mistake. The objective in (5) remains agnostic to these
alternatives by penalizing, through each term

max
x∈Xk

{

(

−r(k)cons(x, θ)
)

+

}

= max
α,s′

{

max(0, ℓ(s,α(k), s′
(k)

) + V̂θ(s
′(k))

− ℓ(s,α, s′)− V̂θ(s
′))

}

the worst-case “regret” of a policy choosing a state-
action (α, s′) at s(k) instead of (α(k), s′

(k)). Here, we
write V̂θ to make explicit the dependence of the im-
puted value function on the weights θ to be deter-
mined.

We can interpret the objective in (5) as a game be-
tween a rational expert providing (through D) optimal
state-action pairs, and a student, who tries to approxi-
mate the expert’s policy by looking at examples where
the two differ on the choice of optimal action. Wher-
ever they differ, the student tries to make the difference
in imputed cost small.

Other measures of inconsistency between the expert
and the student are possible depending on the broad
dynamics setting. For example, if the dynamics are
stochastic, we can minimize the expected regret, or
maximize the likelihood of the observed data [9].

4. VALUE OF SIDE INFORMATION

4.1 Fair comparison
Returning to our original motivation, we ask the ques-

tion: can side information, provided as temporal behavior
constraints that optimal runs of the transition system must
satisfy, be used to our advantage when attempting to re-
cover the stage cost function from expert training data? We
argue that the answer is yes. The specific value of the tem-
poral side information is in providing a task-level, instead of
a time-based, memory.
To illustrate, we compare an implementation of baseline

inverse optimal control to inverse optimal control with avail-
able temporal behavior side information.

algorithm: baseline inverse optimal control
given: TS, Θ ⊆ R

M , ℓ : S ×Act× S → R, sf ∈ S,

{φi : S → R}Mi=1, and D =
{(

(α(k), s′
(k)), s(k)

)}N

k=1

output: imputed value function V̂ (s)
begin

1. for each k = 1, . . . , N :

x(k) := (α(k), s′
(k)), p(k) := s(k),

Xk := {(α, s′) | s(k)
α

−→ s′},
define f(x, p(k)) := ℓ(s(k),α, s′) + V̂ (s′),

for all x = (α, s′) ∈ Xk

end for

2. solve convex optimization problem (5)
for an optimal weight θ⋆

3. return V̂ (s) =
∑M

i=1 θ
⋆
i φi(s)

end

Note that in the baseline algorithm, we are looking for an
optimal time-invariant strategy, ignoring any behavioral side
information; this would be expected in a classical applica-
tion of inverse optimal control or reward learning. We could
impute a general time-varying policy, however the number of
free parameters grows quickly with the number of timesteps,
and in most practical applications the time horizon is either
unknown or very large.

Next, we present the algorithm that incorporates behav-
ioral side information. Note that the differences from the
baseline are in the format of the training data, the avail-
ability of the behavioral specification automaton A, and the
“hybrid” (i.e., using the product state space S × Q) nature
of the imputed value function.

algorithm: inverse optimal control with side information
given: TS, A, Θ ⊆ R

M , ℓ : S ×Act× S → R, sf ∈ S,
{φi : S ×Q → R}Mi=1,

and D =
{(

(α(k), s′
(k)

, q′
(k)), (s(k), q(k))

)}N

k=1

output: imputed value function V̂ (s, q)
begin

1. for each k = 1, . . . , N :

x(k) := (α(k), s′
(k)

, q′
(k)), p(k) := (s(k), q(k)),

Xk := {(α, s′, q′) | s(k)
α

−→ s′, q′ ∈ δ(q(k), L(s(k)))},
define f(x, p(k)) := ℓ(s(k),α, s′) + V̂ (s′, q′),

for all x = (α, s′, q′) ∈ Xk

end for
2. solve convex optimization problem (5)

for an optimal weight θ⋆

3. return V̂ (s, q) =
∑M

i=1 θ
⋆
i φi(s, q)

end

4.2 Gridworld map
We use a 6-by-6 gridworld map for this experiment, as

shown in Figure 2. We assume that an agent placed on

Figure 2: Gridworld map and three expert demon-
strations (red: obstacles, green: goals, blue: initial
state, yellow: final state)

start

end

B

A

(a) q = q0 (b) q = q1

(c) q = q2 (d) q = q3

each square has four actions (up, down, left, right), and all
transitions are deterministic. If the agent is at a border
square and tries to move towards the border (e.g., move
upwards in the top row), the agent will not move. The blue
square is the initial state s0 and the yellow square is the
final goal state sf .

Behavioral demonstrations.
The agent must start from the blue square, pass the two

green squares (in any order) while avoiding all red squares,
and eventually go to the yellow square. Once it reaches the
yellow square, the task is complete. The transition system
has 36 states, and the specification automaton has 4 states.
Thus there are a total of 144 states in the product TS ⊗A,
and at each state, there are 4 available (deterministic) ac-
tions. We show the agent 3 different expert demonstrations
that satisfy the behavioral specification.

Reward model.
We use M = 5 different features as basis functions of the

action-value function, designed as in Table 1.

v6 The optimal state value function corresponding to
the stage cost function that gives 0 only when
the goal state (yellow block with final state q4) is
reached or at the final goal state, otherwise -1.

v7 The optimal state value function corresponding to
the reward function that gives 0 only when a new
intermediate state (green block) is reached or at
the final goal state, otherwise -1.

v8 The optimal state value function corresponding to
the reward function that gives 1 only when an ob-
stacle (red block) is reached, otherwise 0.

v4 The optimal state value function corresponding to
the stage cost function that gives 0 only at transi-
tions in the demonstration, otherwise 1.

v5 The optimal state value function corresponding to
the stage cost function that gives 1 to all transi-
tions.

Table 1: Design of basis functions φi, i = 1, . . . , 5.

4.3 Simulation without side information
In this case, the feature v7 corresponds to the stage cost

function, such that any transition that goes to a green block
has loss 0, otherwise 1. Using the baseline algorithm, the
learned weight vector is

θ = (1, 0,−2290.59, 6396.68,−1),

and the learned optimal non-deterministic strategy is shown
in Figure 3. Note that following the learned strategy an
agent can miss one green block before reaching the yellow
block, or even get stuck, depending on its initial off-policy
location.

4.4 Simulation with side information
In this case, the side information is given as the DFA

shown in Figure 4. Following the side information aware
algorithm, we obtain the learned weight vector

θ = (1,−0.36,−81.22, 230.76,−0.64),

Figure 3: Learned memoryless strategy without side
information. The strategy can miss one green block
before reaching the yellow block because of a lack of
task memory.

q0start

q1

q2

q3

p1

p2

¬p1 ∧ ¬p2
p2

¬p2

p1
¬p1

true

Figure 4: Side information: a DFA constructed for
the example. The atomic proposition p1 is true
whenever the agent is in the green block near the
yellow block, and p2 is true in the other green block.

which imputes the mode-dependent strategy shown in Fig-
ure 5. The task is successfully implemented with this strat-
egy, because the DFA is able to track which green squares
have been visited in which order, and whether it is possible
to move on to the yellow square.

5. CRITIQUES AND CONCLUSIONS
In this work, we presented a general framework for impos-

ing behavioral specifications on policies learned from expert
demonstrations. We showed that temporal side informa-
tion in the form of a specification automaton can be used
to effectively constrain the number of free parameters in an
inverse optimal control problem, allowing imputed policies
to have a task memory—rather then a time-based memory,
or no memory at all. It remains to be seen whether this
framework can be put to practical use in dynamically inter-
esting applications. Although we have treated the problem
entirely using deterministic finite-state transition systems
and policies, we can envision several extensions. The most
clear extension is to consider continuous dynamics, in which
case the policy is a hybrid policy over a mixed continuous-

A'

Side information:

Learned policy:

Ivan Papusha

Side information-aware policy has memory

27

Expert demonstrations:

a breakdown of the dynamic programming principle,
because the stage cost plus cost-to-go can be made
smaller by choosing x instead of x(k),

ℓ(s,α, s′) + V̂ (s′) < ℓ(s,α(k), s′
(k)

) + V̂ (s′
(k)

).

In this case, either the value function V̂ (and hence
θ) is wrong, or the “optimal” demonstration x(k) is a
mistake. The objective in (5) remains agnostic to these
alternatives by penalizing, through each term

max
x∈Xk

{

(

−r(k)cons(x, θ)
)

+

}

= max
α,s′

{

max(0, ℓ(s,α(k), s′
(k)

) + V̂θ(s
′(k))

− ℓ(s,α, s′)− V̂θ(s
′))

}

the worst-case “regret” of a policy choosing a state-
action (α, s′) at s(k) instead of (α(k), s′

(k)). Here, we
write V̂θ to make explicit the dependence of the im-
puted value function on the weights θ to be deter-
mined.

We can interpret the objective in (5) as a game be-
tween a rational expert providing (through D) optimal
state-action pairs, and a student, who tries to approxi-
mate the expert’s policy by looking at examples where
the two differ on the choice of optimal action. Wher-
ever they differ, the student tries to make the difference
in imputed cost small.

Other measures of inconsistency between the expert
and the student are possible depending on the broad
dynamics setting. For example, if the dynamics are
stochastic, we can minimize the expected regret, or
maximize the likelihood of the observed data [9].

4. VALUE OF SIDE INFORMATION

4.1 Fair comparison
Returning to our original motivation, we ask the ques-

tion: can side information, provided as temporal behavior
constraints that optimal runs of the transition system must
satisfy, be used to our advantage when attempting to re-
cover the stage cost function from expert training data? We
argue that the answer is yes. The specific value of the tem-
poral side information is in providing a task-level, instead of
a time-based, memory.
To illustrate, we compare an implementation of baseline

inverse optimal control to inverse optimal control with avail-
able temporal behavior side information.

algorithm: baseline inverse optimal control
given: TS, Θ ⊆ R

M , ℓ : S ×Act× S → R, sf ∈ S,

{φi : S → R}Mi=1, and D =
{(

(α(k), s′
(k)), s(k)

)}N

k=1

output: imputed value function V̂ (s)
begin

1. for each k = 1, . . . , N :

x(k) := (α(k), s′
(k)), p(k) := s(k),

Xk := {(α, s′) | s(k)
α

−→ s′},
define f(x, p(k)) := ℓ(s(k),α, s′) + V̂ (s′),

for all x = (α, s′) ∈ Xk

end for

2. solve convex optimization problem (5)
for an optimal weight θ⋆

3. return V̂ (s) =
∑M

i=1 θ
⋆
i φi(s)

end

Note that in the baseline algorithm, we are looking for an
optimal time-invariant strategy, ignoring any behavioral side
information; this would be expected in a classical applica-
tion of inverse optimal control or reward learning. We could
impute a general time-varying policy, however the number of
free parameters grows quickly with the number of timesteps,
and in most practical applications the time horizon is either
unknown or very large.

Next, we present the algorithm that incorporates behav-
ioral side information. Note that the differences from the
baseline are in the format of the training data, the avail-
ability of the behavioral specification automaton A, and the
“hybrid” (i.e., using the product state space S × Q) nature
of the imputed value function.

algorithm: inverse optimal control with side information
given: TS, A, Θ ⊆ R

M , ℓ : S ×Act× S → R, sf ∈ S,
{φi : S ×Q → R}Mi=1,

and D =
{(

(α(k), s′
(k)

, q′
(k)), (s(k), q(k))

)}N

k=1

output: imputed value function V̂ (s, q)
begin

1. for each k = 1, . . . , N :

x(k) := (α(k), s′
(k)

, q′
(k)), p(k) := (s(k), q(k)),

Xk := {(α, s′, q′) | s(k)
α

−→ s′, q′ ∈ δ(q(k), L(s(k)))},
define f(x, p(k)) := ℓ(s(k),α, s′) + V̂ (s′, q′),

for all x = (α, s′, q′) ∈ Xk

end for
2. solve convex optimization problem (5)

for an optimal weight θ⋆

3. return V̂ (s, q) =
∑M

i=1 θ
⋆
i φi(s, q)

end

4.2 Gridworld map
We use a 6-by-6 gridworld map for this experiment, as

shown in Figure 2. We assume that an agent placed on

Figure 2: Gridworld map and three expert demon-
strations (red: obstacles, green: goals, blue: initial
state, yellow: final state)

start

end

B

A

(a) q = q0 (b) q = q1

(c) q = q2 (d) q = q3

each square has four actions (up, down, left, right), and all
transitions are deterministic. If the agent is at a border
square and tries to move towards the border (e.g., move
upwards in the top row), the agent will not move. The blue
square is the initial state s0 and the yellow square is the
final goal state sf .

Behavioral demonstrations.
The agent must start from the blue square, pass the two

green squares (in any order) while avoiding all red squares,
and eventually go to the yellow square. Once it reaches the
yellow square, the task is complete. The transition system
has 36 states, and the specification automaton has 4 states.
Thus there are a total of 144 states in the product TS ⊗A,
and at each state, there are 4 available (deterministic) ac-
tions. We show the agent 3 different expert demonstrations
that satisfy the behavioral specification.

Reward model.
We use M = 5 different features as basis functions of the

action-value function, designed as in Table 1.

v6 The optimal state value function corresponding to
the stage cost function that gives 0 only when
the goal state (yellow block with final state q4) is
reached or at the final goal state, otherwise -1.

v7 The optimal state value function corresponding to
the reward function that gives 0 only when a new
intermediate state (green block) is reached or at
the final goal state, otherwise -1.

v8 The optimal state value function corresponding to
the reward function that gives 1 only when an ob-
stacle (red block) is reached, otherwise 0.

v4 The optimal state value function corresponding to
the stage cost function that gives 0 only at transi-
tions in the demonstration, otherwise 1.

v5 The optimal state value function corresponding to
the stage cost function that gives 1 to all transi-
tions.

Table 1: Design of basis functions φi, i = 1, . . . , 5.

4.3 Simulation without side information
In this case, the feature v7 corresponds to the stage cost

function, such that any transition that goes to a green block
has loss 0, otherwise 1. Using the baseline algorithm, the
learned weight vector is

θ = (1, 0,−2290.59, 6396.68,−1),

and the learned optimal non-deterministic strategy is shown
in Figure 3. Note that following the learned strategy an
agent can miss one green block before reaching the yellow
block, or even get stuck, depending on its initial off-policy
location.

4.4 Simulation with side information
In this case, the side information is given as the DFA

shown in Figure 4. Following the side information aware
algorithm, we obtain the learned weight vector

θ = (1,−0.36,−81.22, 230.76,−0.64),

Figure 3: Learned memoryless strategy without side
information. The strategy can miss one green block
before reaching the yellow block because of a lack of
task memory.

q0start

q1

q2

q3

p1

p2

¬p1 ∧ ¬p2
p2

¬p2

p1
¬p1

true

Figure 4: Side information: a DFA constructed for
the example. The atomic proposition p1 is true
whenever the agent is in the green block near the
yellow block, and p2 is true in the other green block.

which imputes the mode-dependent strategy shown in Fig-
ure 5. The task is successfully implemented with this strat-
egy, because the DFA is able to track which green squares
have been visited in which order, and whether it is possible
to move on to the yellow square.

5. CRITIQUES AND CONCLUSIONS
In this work, we presented a general framework for impos-

ing behavioral specifications on policies learned from expert
demonstrations. We showed that temporal side informa-
tion in the form of a specification automaton can be used
to effectively constrain the number of free parameters in an
inverse optimal control problem, allowing imputed policies
to have a task memory—rather then a time-based memory,
or no memory at all. It remains to be seen whether this
framework can be put to practical use in dynamically inter-
esting applications. Although we have treated the problem
entirely using deterministic finite-state transition systems
and policies, we can envision several extensions. The most
clear extension is to consider continuous dynamics, in which
case the policy is a hybrid policy over a mixed continuous-

A'

Side information:

Learned policy:

Ivan Papusha

Side information-aware policy has memory

27

Expert demonstrations:

a breakdown of the dynamic programming principle,
because the stage cost plus cost-to-go can be made
smaller by choosing x instead of x(k),

ℓ(s,α, s′) + V̂ (s′) < ℓ(s,α(k), s′
(k)

) + V̂ (s′
(k)

).

In this case, either the value function V̂ (and hence
θ) is wrong, or the “optimal” demonstration x(k) is a
mistake. The objective in (5) remains agnostic to these
alternatives by penalizing, through each term

max
x∈Xk

{

(

−r(k)cons(x, θ)
)

+

}

= max
α,s′

{

max(0, ℓ(s,α(k), s′
(k)

) + V̂θ(s
′(k))

− ℓ(s,α, s′)− V̂θ(s
′))

}

the worst-case “regret” of a policy choosing a state-
action (α, s′) at s(k) instead of (α(k), s′

(k)). Here, we
write V̂θ to make explicit the dependence of the im-
puted value function on the weights θ to be deter-
mined.

We can interpret the objective in (5) as a game be-
tween a rational expert providing (through D) optimal
state-action pairs, and a student, who tries to approxi-
mate the expert’s policy by looking at examples where
the two differ on the choice of optimal action. Wher-
ever they differ, the student tries to make the difference
in imputed cost small.

Other measures of inconsistency between the expert
and the student are possible depending on the broad
dynamics setting. For example, if the dynamics are
stochastic, we can minimize the expected regret, or
maximize the likelihood of the observed data [9].

4. VALUE OF SIDE INFORMATION

4.1 Fair comparison
Returning to our original motivation, we ask the ques-

tion: can side information, provided as temporal behavior
constraints that optimal runs of the transition system must
satisfy, be used to our advantage when attempting to re-
cover the stage cost function from expert training data? We
argue that the answer is yes. The specific value of the tem-
poral side information is in providing a task-level, instead of
a time-based, memory.
To illustrate, we compare an implementation of baseline

inverse optimal control to inverse optimal control with avail-
able temporal behavior side information.

algorithm: baseline inverse optimal control
given: TS, Θ ⊆ R

M , ℓ : S ×Act× S → R, sf ∈ S,

{φi : S → R}Mi=1, and D =
{(

(α(k), s′
(k)), s(k)

)}N

k=1

output: imputed value function V̂ (s)
begin

1. for each k = 1, . . . , N :

x(k) := (α(k), s′
(k)), p(k) := s(k),

Xk := {(α, s′) | s(k)
α

−→ s′},
define f(x, p(k)) := ℓ(s(k),α, s′) + V̂ (s′),

for all x = (α, s′) ∈ Xk

end for

2. solve convex optimization problem (5)
for an optimal weight θ⋆

3. return V̂ (s) =
∑M

i=1 θ
⋆
i φi(s)

end

Note that in the baseline algorithm, we are looking for an
optimal time-invariant strategy, ignoring any behavioral side
information; this would be expected in a classical applica-
tion of inverse optimal control or reward learning. We could
impute a general time-varying policy, however the number of
free parameters grows quickly with the number of timesteps,
and in most practical applications the time horizon is either
unknown or very large.

Next, we present the algorithm that incorporates behav-
ioral side information. Note that the differences from the
baseline are in the format of the training data, the avail-
ability of the behavioral specification automaton A, and the
“hybrid” (i.e., using the product state space S × Q) nature
of the imputed value function.

algorithm: inverse optimal control with side information
given: TS, A, Θ ⊆ R

M , ℓ : S ×Act× S → R, sf ∈ S,
{φi : S ×Q → R}Mi=1,

and D =
{(

(α(k), s′
(k)

, q′
(k)), (s(k), q(k))

)}N

k=1

output: imputed value function V̂ (s, q)
begin

1. for each k = 1, . . . , N :

x(k) := (α(k), s′
(k)

, q′
(k)), p(k) := (s(k), q(k)),

Xk := {(α, s′, q′) | s(k)
α

−→ s′, q′ ∈ δ(q(k), L(s(k)))},
define f(x, p(k)) := ℓ(s(k),α, s′) + V̂ (s′, q′),

for all x = (α, s′, q′) ∈ Xk

end for
2. solve convex optimization problem (5)

for an optimal weight θ⋆

3. return V̂ (s, q) =
∑M

i=1 θ
⋆
i φi(s, q)

end

4.2 Gridworld map
We use a 6-by-6 gridworld map for this experiment, as

shown in Figure 2. We assume that an agent placed on

Figure 2: Gridworld map and three expert demon-
strations (red: obstacles, green: goals, blue: initial
state, yellow: final state)

start

end

B

A

(a) q = q0 (b) q = q1

(c) q = q2 (d) q = q3

each square has four actions (up, down, left, right), and all
transitions are deterministic. If the agent is at a border
square and tries to move towards the border (e.g., move
upwards in the top row), the agent will not move. The blue
square is the initial state s0 and the yellow square is the
final goal state sf .

Behavioral demonstrations.
The agent must start from the blue square, pass the two

green squares (in any order) while avoiding all red squares,
and eventually go to the yellow square. Once it reaches the
yellow square, the task is complete. The transition system
has 36 states, and the specification automaton has 4 states.
Thus there are a total of 144 states in the product TS ⊗A,
and at each state, there are 4 available (deterministic) ac-
tions. We show the agent 3 different expert demonstrations
that satisfy the behavioral specification.

Reward model.
We use M = 5 different features as basis functions of the

action-value function, designed as in Table 1.

v6 The optimal state value function corresponding to
the stage cost function that gives 0 only when
the goal state (yellow block with final state q4) is
reached or at the final goal state, otherwise -1.

v7 The optimal state value function corresponding to
the reward function that gives 0 only when a new
intermediate state (green block) is reached or at
the final goal state, otherwise -1.

v8 The optimal state value function corresponding to
the reward function that gives 1 only when an ob-
stacle (red block) is reached, otherwise 0.

v4 The optimal state value function corresponding to
the stage cost function that gives 0 only at transi-
tions in the demonstration, otherwise 1.

v5 The optimal state value function corresponding to
the stage cost function that gives 1 to all transi-
tions.

Table 1: Design of basis functions φi, i = 1, . . . , 5.

4.3 Simulation without side information
In this case, the feature v7 corresponds to the stage cost

function, such that any transition that goes to a green block
has loss 0, otherwise 1. Using the baseline algorithm, the
learned weight vector is

θ = (1, 0,−2290.59, 6396.68,−1),

and the learned optimal non-deterministic strategy is shown
in Figure 3. Note that following the learned strategy an
agent can miss one green block before reaching the yellow
block, or even get stuck, depending on its initial off-policy
location.

4.4 Simulation with side information
In this case, the side information is given as the DFA

shown in Figure 4. Following the side information aware
algorithm, we obtain the learned weight vector

θ = (1,−0.36,−81.22, 230.76,−0.64),

Figure 3: Learned memoryless strategy without side
information. The strategy can miss one green block
before reaching the yellow block because of a lack of
task memory.

q0start

q1

q2

q3

p1

p2

¬p1 ∧ ¬p2
p2

¬p2

p1
¬p1

true

Figure 4: Side information: a DFA constructed for
the example. The atomic proposition p1 is true
whenever the agent is in the green block near the
yellow block, and p2 is true in the other green block.

which imputes the mode-dependent strategy shown in Fig-
ure 5. The task is successfully implemented with this strat-
egy, because the DFA is able to track which green squares
have been visited in which order, and whether it is possible
to move on to the yellow square.

5. CRITIQUES AND CONCLUSIONS
In this work, we presented a general framework for impos-

ing behavioral specifications on policies learned from expert
demonstrations. We showed that temporal side informa-
tion in the form of a specification automaton can be used
to effectively constrain the number of free parameters in an
inverse optimal control problem, allowing imputed policies
to have a task memory—rather then a time-based memory,
or no memory at all. It remains to be seen whether this
framework can be put to practical use in dynamically inter-
esting applications. Although we have treated the problem
entirely using deterministic finite-state transition systems
and policies, we can envision several extensions. The most
clear extension is to consider continuous dynamics, in which
case the policy is a hybrid policy over a mixed continuous-

A'

Side information:

Learned policy:

Ivan Papusha

Summary

• Extend to broader dynamics classes—hybrid, nonlinear…
• Expand the family of specifications and languages
• Investigate the role of stochastic policies and partially

specified side information
• Demonstrate scalability

28

• Open up a broad set of new problems to ideas from control
and optimization

direct
extensions

new
opportunities

IJCAI 2017

CDC 2016

https://github.com/u-t-autonomous/sydar

https://github.com/u-t-autonomous/sydar

Ivan Papusha

Acknowledgments

• Jie Fu (WPI)
• Min Wen (UPenn)
• Ufuk Topcu (UTexas)
• Richard Murray (Caltech)

29

