Networked Adaptive Systems

Ivan Papusha Eugene Lavretsky Richard M. Murray

Control and Dynamical Systems, Caltech

Penn GRASP Lab seminar January 17, 2014

"post"-modern control

logic synthesis

optimal control + temporal logic specs

optimal control + adaptation

optimal control + adaptation + multiagent

optimal control + adaptation + multiagent + networking

networked adaptive systems

optimal control + adaptation + multiagent + networking

networked adaptive systems

applications of networked adaptive systems

- smartgrid: bootstrapping, disturbance rejection
- circuits: high performance phase locked loops
- robotics: system identification with consensus constraints

simple example

• input-output model

$$y(t) = \theta u(t)$$

- at each time $t \ge 0$:
 - select input $u(t) \in \mathbf{R}$
 - measure $y(t) \in \mathbf{R}$
- **goal**: determine θ

$$u(t) \longrightarrow y(t) = \theta u(t) \longrightarrow y(t)$$

identification approach

- time-varying estimate $\hat{ heta}(t)\in {f R}$
- simulated output

$$\hat{y}(t) = \hat{ heta}(t)u(t)$$

• our task: make simulator match true model

$$(\hat{y}(t)-y(t))^2
ightarrow 0$$
 as $t
ightarrow \infty$

$$u(t) \qquad \qquad y(t) = \theta u(t) \qquad \qquad y(t)$$

$$\hat{y}(t) = \hat{\theta}(t)u(t) \qquad \qquad \hat{y}(t)$$

unconstrained minimization

minimize the instantaneous cost

$$J(\hat{\theta}(t)) = \frac{1}{2}(\hat{y}(t) - y(t))^2$$
$$= \frac{1}{2}(\underbrace{\hat{\theta}(t) - \theta}_{\Delta\theta(t)})^2 u(t)^2$$

by gradient descent on $\hat{\theta}(t)$

$$\begin{split} \frac{d}{dt}\hat{\theta}(t) &:= -\gamma \frac{\partial J}{\partial \hat{\theta}(t)} \\ &= -\gamma \Delta \theta(t) u(t)^2, \end{split}$$

where $\gamma > {\rm 0}$ is the learning rate

gradient learning rule

• gradient rule can be implemented online

$$\frac{d}{dt}\hat{\theta}(t) = -\gamma \Delta \theta(t) u(t)^{2}$$
$$= -\gamma (\underbrace{\hat{y}(t) - y(t)}_{\Delta y(t)}) u(t)$$

- output error: $\Delta y(t)$
- parameter error: $\Delta \theta(t)$
- fact: output error (usually) converges, $\Delta y(t) \rightarrow 0$ as $t \rightarrow \infty$ (proof: lyapunov argument $V(\Delta \theta) = \Delta \theta^2$)
- question: when does parameter error converge?

$$\Delta heta(t) \stackrel{?}{
ightarrow} 0$$
 as $t
ightarrow \infty$

typical error curves

answer: simple condition on parameter convergence

• parameter error dynamics

$$\begin{aligned} \frac{d}{dt} \Delta \theta(t) &= \frac{d}{dt} \left(\hat{\theta}(t) - \theta \right) \\ &= -\gamma \Delta \theta(t) u(t)^2 \\ &\downarrow \\ \Delta \theta(t) &= \exp\left\{ -\gamma \int_0^t u(\tau)^2 \, d\tau \right\} \Delta \theta(0) \end{aligned}$$

• parameter error converges if u(t) is **persistently exciting**:

$$\lim_{t\to\infty}\int_0^t u(\tau)^2\,d\tau=+\infty$$

checking the memoryless system

• choose input u(t) = c, where $c \neq 0$ is a real constant

$$\lim_{t \to \infty} \int_0^t u(\tau)^2 d\tau = \lim_{t \to \infty} \int_0^t c^2 d\tau$$
$$= \lim_{t \to \infty} c^2 t$$
$$= +\infty \quad \checkmark$$

• excitation condition:

$$u(t) = c$$
 is persistently exciting $\Leftrightarrow c \neq 0$

• persistence of excitation guarantees parameter convergence

multiple agent identification model

- *n* agents labeled $i = 1, \ldots, n$
- at time $t \ge 0$, agent *i* can measure $x_i(t) \in \mathbf{R}^q$ and $y_i(t) \in \mathbf{R}$
- regressor: $\phi : \mathbf{R}^q \to \mathbf{R}^p$
- parameters: $\theta \in \mathbf{R}^{p}$
- true output:

$$y_i(t) = \theta^T \phi(x_i(t)), \quad i = 1, \dots, n$$

simulated output:

$$\hat{y}_i(t) = \hat{\theta}_i(t)^T \phi(x_i(t)), \quad i = 1, \dots, n$$

• **goal**: parameter convergence $\|\theta_i(t) - \theta\| \rightarrow 0$ for all i = 1, ..., n.

multiple agent identification model

$$u_i(t) \qquad \qquad y_i(t) = \theta u_i(t) \qquad \qquad y_i(t)$$
$$\hat{y}_i(t) = \hat{\theta}_i(t) u_i(t) \qquad \qquad \hat{y}_i(t)$$

$$\begin{array}{c} u_i(t) \\ \hline \\ y_i(t) = \theta u_i(t) \\ \hline \\ \hat{y}_i(t) = \hat{\theta}_i(t) u_i(t) \\ \hline \\ \hat{y}_i(t) \end{array}$$

multiple agent consensus scheme

• each agent's parameter estimate is a sum of two terms

neighboring information

- can be implemented online
- respects network communication structure

interpretations of consensus scheme

gradient descent on instantaneous cost

$$J(\hat{\theta}_1, \dots, \hat{\theta}_n) = \underbrace{\sum_{i=1}^n (\hat{y}_i(t) - y_i(t))^2}_{\text{identification objective}} + \underbrace{\sum_{\{v_i, v_j\} \in \mathcal{E}} \frac{1}{2} a_{ij} \|\hat{\theta}_j(t) - \hat{\theta}_i(t)\|_2^2}_{\text{disagreement objective}}$$

- distributed PD control
- dynamical model fusion (cf. sensor fusion)
- augmented lagrangian flow

minimize
$$\sum_{i=1}^{n} (\hat{y}_i(t) - y_i(t))^2$$

subject to $\hat{\theta}_j(t) - \hat{\theta}_i(t) = 0$, $i, j = 1, \dots, n$

convergence

candidate lyapunov function:

$$V(\Delta heta) = \sum_{i=1}^n \Delta heta_i^T \Delta heta_i$$

require:

- connected communication graph ${\mathcal G}$
- bounded (uniformly cts) regressors
- collective persistence of excitation

rate determined by:

- algebraic connectivity of ${\cal G}$
- minimum level of collective persistence of excitation

excitation can be moved around

the following all imply parameter convergence:

- enlightened: a few ϕ_i are persistently exciting,
- total: every ϕ_i is persistently exciting,
- intermittent: there exists an unbounded sequence of times t₁, t₂,... such that some φ_i obeys the collective PE condition in each interval [t_k, t_{k+1}],
- collaborative: none of the ϕ_i is persistently exciting, but the collective PE condition still holds.

example: collaborative PE (w/o and w/ consensus)

22 / 24

example: collaborative PE error curves

thanks!

more information:

- ivan papusha: www.cds.caltech.edu/~ipapusha
- richard murray: www.cds.caltech.edu/~murray

funding:

- NDSEG
- STARnet/TerraSwarm