Toward Learning and Adaptation
in Optimization Based Control

Ivan Papusha

California Institute of Technology
Control and Dynamical Systems

Google, Mountain View, CA
January 12, 2016

1/54

“Post”-modern control

task specifications < ----TuLiP, LTLMoP, Al Plan
A
command response
Y "
trajectory generation | < ---- min. / g(z(r),u(r)) dr
7y ’
command v response

low level control < ____ Classical control
state estimation

A
command response

hardware

2/ 54

Optimal control 4+ supervisory temporal logic

< ----TuLiP, LTLMoP, Al Plan

é————muin./0 g(z(r), u(r)) dr

command Tresponse
classical control
low level control Foog= . .
ow level contro state estimation
A
command response
Y
hardware

3/54

Optimal control 4+ adaptation

task specifications

< ----TuLiP, LTLMoP, Al Plan

command response

6————muin./0 g(m(T),u(T))dT

_ _ _ classical control
state estimation

command Tresponse

hardware

4/54

Optimal control 4+ adaptation + multiagent

task specifications task specifications

task specifications

command response command response command

command response command response command

hardware

hardware hardware

5/54

Optimal control 4+ adaptation + multiagent 4+ networking

task specifications

command

task specifications

command

task specifications

command

hardware

command

hardware

hardware

6/54

Optimal control 4+ adaptation + multiagent 4+ networking

task specifications

command

task specifications

command

task specifications

command

hardware

command

hardware

hardware

networked adaptive systems

6/54

Applications of networked adaptive systems

e smartgrid: bootstrapping, disturbance rejection
e circuits: high performance phase locked loops
e robotics: distributed bootstrapping with consensus constraints

e adaptive systems: collaborative system identification

7/54

Learning safely: why?

Consider a (discrete time) linear dynamical system with state x; € R"
and control input u; € R™, for all t =0,1,...,

Xe+1 = Axy + Buy.

We wish to stabilize the system, x; — 0 as t — oo. For simplicity,
assume BT B is invertible.

8 /54

A “reasonable” control scheme

At each time t, choose a control input u; to make ||x¢11]3 small,

us € argmin ||Ax; + Bug|3

u;€RM

e in this case u; = ui(x;) only depends on the current state at time t
e optimal input is a constant state feedback

u.=—(B"B)"'BT Ax;
e closed loop system

xes1= (A= B(B"B)™'BTA)x;, t=0,1,...

A+BK

9/54

Example instance

0.5 -3 1 1
A‘[o 0.5}7 B‘_J’ o= 1}

open loop (us = 0) closed loop (ur = —(BTB)"1BT Ax:)

[Ixel
fIxel

ZDHMTIQSM » I

2 4 0 12 1 0 1 C 1 . 20 (] 2 4 6 8

t t

p(A)=05<1

- (eTey 5 = ([02,) -2

10 / 54

Identification model

e input-output model

e at each time t > 0:

e select input u(t) € R
e measure y(t) € R

e goal: determine 6

u(t) —»

y(t) = 6u(t)

— y(t)

11/ 54

Identification approach

o time-varying estimate A(t) € R

e simulated output

§(t) = b(t)u(t)

e our task: make simulator match true model

(9(t) = y(£))* = 0

as t— o0

t
O 1 e —eue

A\

— y(t)

A\

y(t) =6(t)u(t)

— (1)

12 /54

Unconstrained minimization

minimize the instantaneous cost

() = 5(9(6) - y(0))
— 2 (B(e) - 0)u(t)?
2 H/—/
AG(t)
by gradient descent on 6(t)
Sy YR
"= 550
— A B0(0)u(2),

where v > 0 is the learning rate

13 / 54

Gradient learning rule

e gradient rule can be implemented online

L9(t) = —46(e)u(t)?

dt
= (1) — y(t))u(t)
N———

Ay(t)

e output error: Ay(t)

parameter error: Af(t)

fact: output error (usually) converges, Ay(t) — 0 as t — o0
(proof: Lyapunov argument V(Af) = A6?)

e question: when does parameter error converge?

2

AO(t) >0 as t— o0

14 / 54

Typical error curves

A6 = parameter error

Ay = output error

15 / 54

Simple condition on parameter convergence

e parameter error dynamics

%Ae(t) - % (é(t) _ 9)

= —yA0(t)u(t)?
I

Af(t) = exp {y/ot u(T)? dT} A6(0)

e parameter error converges if u(t) is persistently exciting:

t
lim / u(T)? dr = 400
0

t—o0

16 / 54

Checking the memoryless system

e choose input u(t) = ¢, where ¢ # 0 is a real constant

t t
lim u(t)?>dr = lim cdr
t—o0 0 t—00 0

= lim ¢t
t—o0
=400 Vv

e excitation condition:
u(t) = c is persistently exciting < ¢ #0

e persistence of excitation guarantees parameter convergence

17 / 54

Multiple agent identification model

n agents labeled i =1,...,n

e at time t > 0, agent i can measure x;(t) € R? and y;(t) € R

e regressor: ¢ : R9 — RP
e parameters: # € RP
e true output:
yi(t) =0T o(xi(t)), i=1,...,n

e simulated output:

§i(t) = 0:(t)To(x(t)), i=1,...,

e goal: parameter convergence ||0;(t) — 6| = 0 forall i=1,...,n.

18 / 54

Multiple agent identification model

u;(t)

y,-(t) =9U,'(t) —»y,-(t)

\ 4

9i(t) = 6;(t)ui(t) > Ji(t)

\ 4

U,‘(t)

A

yi(t) = 0ui(t) = yi(t)

}Z‘(T.’) = §/(t)u,(t) _Vyi(t)

\ 4

19 / 54

Multiple agent consensus scheme

e each agent's parameter estimate is a sum of two terms

d) o
0= —y(xi)(Vi — yi) + E a;(0; — 0;)
_—
JEN;

local information

neighboring information

e can be implemented online

e respects network communication structure

20 / 54

Interpretations of consensus scheme

e gradient descent on instantaneous cost

n

08 = S0 O+ S Saillfe) - Bl

i=1 {vi,v;}e&€

identification objective disagreement objective

e distributed PD control
o dynamical model fusion (cf. sensor fusion)

e augmented Lagrangian flow

n

minimize Z()A/,(f) — yi(t))?

i=1
subject to 0;(t) —6;(t)=0, i, j=1,...,n

21 /54

Convergence

candidate Lyapunov function:
V(A0) = > A6 Ab;
i=1

require:
e connected communication graph G
e bounded (uniformly cts) regressors
e collective persistence of excitation
rate determined by:
e algebraic connectivity of G

e minimum level of collective persistence of excitation

22 /54

Collective persistence of excitation

proof idea:

e error dynamics are (for 6,0; € RY)

C00() = (L +10(6)a0(2)

rank n—1

e for A9 — 0, bound in every direction w € R”

1 t
WT(/ L—|—’y¢(7’)dr>w>0
t— 1ty to

o collective PE: there exist positive real numbers my, my > 0 such
that for all tg > 0 and t > ty the matrix inequality

T)pi 7') dr = ml

fo j—1

23 /54

Excitation can be moved around

the following all imply parameter convergence:
e enlightened: a few ¢; are persistently exciting,
e total: every ¢; is persistently exciting,

e intermittent: there exists an unbounded sequence of times ti, s, ...
such that some ¢; obeys the collective PE condition in each interval
[tk’ tk+1]v

e collaborative: none of the ¢; is persistently exciting, but the
collective PE condition still holds.

enlightened total intermittent collaborative

24 / 54

Example: collaborative PE (w/o and w/ consensus)

estimate

estimate

estimates of 67

VC _________________

- = —true
ag. 1
ag. 2
ag. 3

0 1 2 3 4

t
estimates of 0,
0 1 2 3 4

estimate

estimate

estimates of 07

- = —true
ag. 1
ag. 2
ag. 3
0 1 2 3 4 5
t
estimates of 0>
0 1 2 3 4 5

25 / 54

Example: collaborative PE error curves

parameter error vs. prediction error

1202

0 0.5 1 15 2 25 3 3.5

26 / 54

Rate bound

take direction w = al/vn +37, By
——

consensus subspace

) 2 2
rate > inf| | <1 max{)\z(l —a?), v my — 2ympy [&5 (1 — a2)}
;

14 T

o
®

rate constant
°
>

1S
S

0 L L
0.75 0.8 0.85 0.9 0.95 1

27 / 54

Model reference adaptive control
e Van der Pol (nonlinear) oscillators (n of them)
Xi=—xi+p(l—x)%+u, i=1,...,n
o reference model for each oscillator (place poles at —1 + j)

wref ref - ref .
X =20 +x), i=1,...,n

o regressors
o) =(1—=x)%, i=1,...,n
e adaptation: two control gains per agent & p > 0

e consensus on /. only

28 / 54

Model reference adaptive control

. phase portrait

—ab 4

xol

random initial conditions, n =5 agents, open loop

29 / 54

Model reference adaptive control

. phase portrait

—ab 4

xol

random initial conditions, n = 10 agents, open loop

29 / 54

Model reference adaptive control

. phase portrait

—ab

xol

random initial conditions, n = 15 agents, open loop

29 / 54

Model reference adaptive control

phase portrait

6 T

xol

random initial conditions, n = 20 agents, open loop

29 / 54

Model reference adaptive control

. phase portrait

—ab 4

xol

random initial conditions, n = 5 agents, MRAC

30/ 54

Model reference adaptive control

. phase portrait

—ab 4

xol

random initial conditions, n = 10 agents, MRAC

30/ 54

Model reference adaptive control

phase portrait

—ab

xol

random initial conditions, n = 15 agents, MRAC

30/ 54

Model reference adaptive control

phase portrait

xol

random initial conditions, n = 20 agents, MRAC

30/ 54

Model reference adaptive control

random initial

. phase portrait

—ab 4

xol

conditions, n = 5 agents, MRAC + j-consensus

31/ 54

Model reference adaptive control

random initial

. phase portrait

—ab 4

xol

conditions, n = 10 agents, MRAC + p-consensus

31/ 54

Model reference adaptive control

random initial

phase portrait

—ab

xol

conditions, n = 15 agents, MRAC + p-consensus

31/ 54

Model reference adaptive control

phase portrait

xol

random initial conditions, n = 20 agents, MRAC + p-consensus

31/ 54

Model reference

adaptive control

parameter estimates
: ‘

<3 1p
L
o
b
ok
VAN ;
0 5

random initial

conditions, n =5

agents, MRAC

15

32 /54

Model reference adaptive control

parameter estimates
: ‘

random initial conditions, n = 10 agents, MRAC

32 /54

Model reference adaptive control

parameter estimates
: ‘

random initial conditions, n = 15 agents, MRAC

32 /54

Model reference adaptive control

parameter estimates
: ‘

random initial conditions, n = 20 agents, MRAC

32 /54

Model reference adaptive control

parameter estimates
: ‘

random initial conditions, n = 5 agents, MRAC + j-consensus

33/ 54

Model reference adaptive control

parameter estimates
: ‘

15

random initial conditions, n = 10 agents, MRAC + p-consensus

33 /54

Model reference adaptive control

parameter estimates
: ‘

random initial conditions, n = 15 agents, MRAC + p-consensus

33 /54

Model reference adaptive control

parameter estimates
: ‘

random initial conditions, n = 20 agents, MRAC + p-consensus

33 /54

Summary

e simple idea: defined by

0(t+1) = classical update rule + consensus

e fundamentally nonlinear analysis and tools (mature theory)

e future directions:

quantitative analysis of noise effects (often) unchanged
engineer systems where the network does not fight adaptation
adaptation: graceful degradation when network fails

network: source of extra performance and robustness

34 /54

Experiments with flying machines

35/ 54

Approximate Dynamic Programming with Guarantees

36 / 54

Finite state Markov Decision Processes

e finite state space X = {1,...,n}
o finite action space U(i) CU = {1,..., m} available at each state i

e probability of transition p;(u) from state i to state j under control
action u € U(i)

e incurred stage cost g(/, u,j)
example. gridworld

Ry

R
X={1,...,6}, U={N,S,E,W}, p;(u)e{0.8,0.1,0.1}

37 /54

Deterministic policies

A policy is a sequence ™ = {po, ft1,...} where each py : X - U is a
function that maps a state i to an available action in (/).

e Given a policy 7, the sequence of states {i, i1,...} is a Markov
chain with transition probabilities

P(iey1 =4 | ir = 1) = pij(pe(r))-

e for a given policy m = {uo, g1, . - .}, we should have
ZPU(Ht(i)) =1, foralli=1,...,n.
j=1

example. feasible gridworld policy that gets to R2

t 3a :ut(3) = 3)
pe(4) =5, ue(5) =6, wu(6)=3, forallt=0,1,...

38 /54

Policy cost and stationary policies
e The expected cost of a policy when starting from an initial state / is
o0
V(i) = E | > v g, pelie), iey1) \ i = ,-1 :
t=0

where v € (0,1] is a discount factor.

e for the infinite horizon case, it is often convenient to consider
stationary policies m = {u, p, ...} and v < 1.

example. the policy i = p from the last slide is stationary since it is the
same for all t =0,1,...

39 /54

Value function
The value function is defined as

VW(’) =E Z’Ytg(itaut(it)ait+1) ‘ iO = I‘| ’

t=0

= Z Z Pitj(Mt(it))’Ytg(ita pe(it), J)

t=0 j=1

e we can think of V™ as a vector in R”, where each component V7 (i)
corresponds to the expected cost-to-go starting at state /

e The goal is to find a policy that minimizes the expected cost-to-go,

V(i) = mﬂin V7(i).

40 / 54

Bellman operator
The optimal cost-to-go satisfies the Bellman equation

V(i) = uEmZ/lln Elg(i,u,j) +vV*() | i,u]

:urenblln Zp,] u)(gli,u, j) +~vV*(j)), foralli=1,...,n,

with the corresponding optimal policy at step t given by

pi (i) =argminE[g(i,u,j) +~vV*() | i,u], foralli=1,...,n.
u€U(i)

41 /54

Value iteration

For any value function vector (V/(1),..., V(n)) define the vector TV by
the Bellman operator,

(TVXOZme)HgMUJ)+7VUHfML

ueU(i
Thus the Bellman equation reads V = T V.

e value iteration
vE) — vk e =0,1,....
o for any starting guess V(%) the sequence { V(@ V(1) 1 converges
to V*.

e Under some regularity assumptions and an infinite horizon, this
equation has a unique solution V* with a corresponding stationary
policy 7*.

42 /54

Approximating from below

Any function V that satisfies the Bellman inequality

VTV

automatically satisfies V < V*

V is a componentwise lower bound on V*
recursively apply T to both sides and use the monotonicity property,

VSTVLSTV <. =V~

monotonicity. if V4 < V5, then TV; < TV, (componentwise)

the Bellman inequality defines a class of underestimators of V*, one
of which is V* itself

underestimators capture a class capture a performance bound on the
original decision problem

trivial performance bound: V = 0.

43/ 54

Bounds on the value function

== log(Value function)

Value function

44 / 54

Approximating from above

Similarly, any function that satisfies the reverse Bellman inequality
TVLSV

automatically satisfies V* < V.

e componentwise upper bound on V*
o recursively apply 7 to both sides of and use the monotonicity
property,
Vi=. . <TAVSTV LV

e overestimators correspond to suboptimal policies, because their
value is greater than or equal to the optimal value

45 / 54

Bound optimization by linear programming

We can attempt to recover V* by optimizing over the class of value
function underestimators,

maximize V
subjectto VTV,

If the transition probabilities and stage costs are known, then we can
rewrite as a linear program (LP),

n

maximize Z w(i)V(i)

i=1
n
subject to V(i) < py(u)(g(i, u.j) + V()
j=1
Vi=1,...,nYucU(i),
e variables V/(1),...,V(n)
o weights w(1),...,w(n) are arbitrary (as long as they are positive)

e number of linear constraints is O(nm), number of variables O(n)

46 / 54

Optimization with known transition probabilities

Related underapproximation LP

maximize ZW(Zak¢k

i= 1

N
subject to Zak¢k Zpu (i,u,j) +Zak¢k(j)>)

k=1 k=1
Vi=1,. nVuEL{()

e restrict the class of underestimators by further specifying an
approximating basis,

N
=Y oudili), ¢k X —R
k=

e number of linear constraints O(nm), number of variables O(N)
e ideally, N < n
e true value V* is recovered if it is in the span of the basis functions

47 / 54

Uniform approximation guarantees

To get guarantees on approximation accuracy, simultaneously find
functions VT and V'~ in an approximating class (e.g., relative to a fixed

basis) such that
Vo< V< VT,
and the difference between VT and V= is as small as possible:
minimize max; { V(i) — V= (i)}
subjectto V— < TV~
TVt <VT
V-,vtec

variables VT and V'~
C C R" represents (e.g., basis) restrictions on the approximating

class
optimal value €* is measure of approximation error over all states

o extension. operate at specified level of suboptimality < e

48 / 54

Aside: robust LP

Consider a linear program in inequality form,

minimize ¢’ x

subject to a/x<b;, i=1,....m

over the variable x € R", where ¢, b; are fixed, and a; are known to lie in
ellipsoids,
a,e& = {5,‘ + P;u | HUH2 < 1}

robust linear programming

minimize ¢! x

subject to a/x < b, forall a; € E,i=1,....m

49 / 54

Aside: robust LP

We can rewrite the robust LP,

minimize ¢’ x
subject to a/x < b;, forall a; € &,i=1,...,m
as an SOCP,

minimize ¢’ x

subject to 3/ x + ||P x|a < bi, i=1,...

e notably, the problem is convex

e additional norm terms act as regularization constraints

o efficient solution techniques for medium to large m, n.

50 / 54

Optimization with unknown transition probabilities

If the transition probabilities are known to lie in an ellipsoid, then we can
rewrite the underapproximation LP

n

maximize Z w(i)V(i)

subject to V(i) < ZPU(U)(g(ia uj)+ V()

Vi=1,...,nYuelU(i),

as a robust LP (viz., SOCP)
o ellipsoidal outbound probabilities: p;.(u) € E:(u), Vi, Vu
e special case: lower and upper bounds on transition probabilities
pi(u) & [p;(u), Py(u)]
e double-sided LP has guaranteed approximation error via objective

51/ 54

Example

basis vectors ¢, encode state membership constraints

e pooling over free regions decreases basis complexity

policy is robust wrt perturbations in p;j(u)

quantitative measure of suboptimality

52 / 54

Extensions

e Specified basis functions for state constraints

e automaton product MPDs for logic specifications (slightly
generalized version of [Wolff et al.’12]). The engineering challenge is
to pick appropriate basis vectors.

e enforce the LP constraints only at certain specified states—more
tractable with loss of bound guarantees.

e attempt to discover p;(u) similarly to [Fu et al., '15] PAC-MDP
learning, either by simulation or repeated probing.

e It is also possible to talk about the probability of satisfaction by
incorporating it, directly or by proxy, into the additive stage costs.

e Similarly, a proxy for exploration can also be part of the objective.

53 / 54

Thanks!

more information: lvan Papusha, Richard M. Murray

www . ivanpapusha.com

funding: NDSEG, Powell Foundation, STARnet/TerraSwarm, Boeing

54 / 54

