
Toward Learning and Adaptation

in Optimization Based Control

Ivan Papusha

California Institute of Technology
Control and Dynamical Systems

Google, Mountain View, CA
January 12, 2016

1 / 54

“Post”-modern control

hardware

low level control

trajectory generation

task specifications

command response

command response

command response

min
u

.

∫

T

0

g
(

x(τ), u(τ)
)

dτ

classical control
state estimation

TuLiP, LTLMoP, AI Plan

2 / 54

Optimal control + supervisory temporal logic

hardware

low level control

trajectory generation

task specifications

command response

command response

min
u

.

∫

T

0

g
(

x(τ), u(τ)
)

dτ

classical control
state estimation

TuLiP, LTLMoP, AI Plan

3 / 54

Optimal control + adaptation

hardware

low level control

trajectory generation

task specifications

command response

command response

min
u

.

∫

T

0

g
(

x(τ), u(τ)
)

dτ

classical control
state estimation

TuLiP, LTLMoP, AI Plan

4 / 54

Optimal control + adaptation + multiagent

hardware

low level control

trajectory generation

task specifications

command response

command response

hardware

low level control

trajectory generation

task specifications

command response

command response

hardware

low level control

trajectory generation

task specifications

command response

command response

5 / 54

Optimal control + adaptation + multiagent + networking

hardware

low level control

trajectory generation

task specifications

command response

command response

hardware

low level control

trajectory generation

task specifications

command response

command response

hardware

low level control

trajectory generation

task specifications

command response

command response

6 / 54

Optimal control + adaptation + multiagent + networking

hardware

low level control

trajectory generation

task specifications

command response

command response

hardware

low level control

trajectory generation

task specifications

command response

command response

hardware

low level control

trajectory generation

task specifications

command response

command response

networked adaptive systems

6 / 54

Applications of networked adaptive systems

• smartgrid: bootstrapping, disturbance rejection

• circuits: high performance phase locked loops

• robotics: distributed bootstrapping with consensus constraints

• adaptive systems: collaborative system identification

7 / 54

Learning safely: why?

Consider a (discrete time) linear dynamical system with state xt ∈ Rn

and control input ut ∈ Rm, for all t = 0, 1, . . .,

xt+1 = Axt + But .

We wish to stabilize the system, xt → 0 as t → ∞. For simplicity,
assume BTB is invertible.

8 / 54

A “reasonable” control scheme

At each time t, choose a control input ut to make ‖xt+1‖
2
2 small,

ut ∈ argmin
ut∈Rm

‖Axt + But‖
2
2

• in this case ut = ut(xt) only depends on the current state at time t

• optimal input is a constant state feedback

ut = −(BTB)−1BTAxt

• closed loop system

xt+1 = (A− B(BTB)−1BTA︸ ︷︷ ︸
A+BK

)xt , t = 0, 1, . . .

9 / 54

Example instance

A =

[
0.5 −3
0 0.5

]
, B =

[
1
1

]
, x0 =

[
1
1

]

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

t

‖x
t
‖

open loop (ut = 0)

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

t

‖x
t
‖

closed loop (ut = −(BTB)−1BTAxt)

ρ(A) = 0.5 < 1

ρ(A− B(BTB)−1BTA) = ρ

([
0.25 −1.75
−0.25 1.75

])
= 2 6< 1

10 / 54

Identification model

• input-output model
y(t) = θu(t)

• at each time t ≥ 0:

• select input u(t) ∈ R
• measure y(t) ∈ R

• goal: determine θ

y(t) = θu(t) y(t)u(t)

11 / 54

Identification approach

• time-varying estimate θ̂(t) ∈ R

• simulated output
ŷ(t) = θ̂(t)u(t)

• our task: make simulator match true model

(ŷ(t)− y(t))2 → 0 as t → ∞

y(t) = θu(t) y(t)
u(t)

ŷ(t)ŷ(t) = θ̂(t)u(t)

12 / 54

Unconstrained minimization

minimize the instantaneous cost

J(θ̂(t)) =
1

2
(ŷ(t)− y(t))2

=
1

2
(θ̂(t)− θ︸ ︷︷ ︸

∆θ(t)

)2u(t)2

by gradient descent on θ̂(t)

d

dt
θ̂(t) := −γ

∂J

∂θ̂(t)

= −γ∆θ(t)u(t)2,

where γ > 0 is the learning rate

13 / 54

Gradient learning rule

• gradient rule can be implemented online

d

dt
θ̂(t) = −γ∆θ(t)u(t)2

= −γ(ŷ(t)− y(t)︸ ︷︷ ︸
∆y(t)

)u(t)

• output error: ∆y(t)

• parameter error: ∆θ(t)

• fact: output error (usually) converges, ∆y(t) → 0 as t → ∞
(proof: Lyapunov argument V (∆θ) = ∆θ2)

• question: when does parameter error converge?

∆θ(t)
?
→ 0 as t → ∞

14 / 54

Typical error curves

∆y = output error

∆
θ
=

p
a
ra
m
e
te
r
e
rr
o
r

ou
tpu

t o
nly

pa
ra
m
et
er
+
ou
tp
ut

15 / 54

Simple condition on parameter convergence

• parameter error dynamics

d

dt
∆θ(t) =

d

dt

(
θ̂(t)− θ

)

= −γ∆θ(t)u(t)2

⇓

∆θ(t) = exp

{
−γ

∫ t

0

u(τ)2 dτ

}
∆θ(0)

• parameter error converges if u(t) is persistently exciting:

lim
t→∞

∫ t

0

u(τ)2 dτ = +∞

16 / 54

Checking the memoryless system

• choose input u(t) = c , where c 6= 0 is a real constant

lim
t→∞

∫ t

0

u(τ)2 dτ = lim
t→∞

∫ t

0

c2 dτ

= lim
t→∞

c2t

= +∞ X

• excitation condition:

u(t) = c is persistently exciting ⇔ c 6= 0

• persistence of excitation guarantees parameter convergence

17 / 54

Multiple agent identification model

• n agents labeled i = 1, . . . , n

• at time t ≥ 0, agent i can measure xi (t) ∈ Rq and yi (t) ∈ R

• regressor: φ : Rq → Rp

• parameters: θ ∈ Rp

• true output:
yi (t) = θTφ(xi (t)), i = 1, . . . , n

• simulated output:

ŷi (t) = θ̂i (t)
Tφ(xi (t)), i = 1, . . . , n

• goal: parameter convergence ‖θi (t)− θ‖ → 0 for all i = 1, . . . , n.

18 / 54

Multiple agent identification model

ui(t)
yi(t)yi(t) = θui(t)

ŷi(t) = θ̂i(t)ui(t) ŷi(t)

ui(t)
yi(t)yi(t) = θui(t)

ŷi(t) = θ̂i(t)ui(t) ŷi(t)

19 / 54

Multiple agent consensus scheme

• each agent’s parameter estimate is a sum of two terms

d

dt
θ̂i = −γφ(xi)(ŷi − yi)︸ ︷︷ ︸

local information

+
∑

j∈Ni

aij(θ̂j − θ̂i)

︸ ︷︷ ︸
neighboring information

• can be implemented online

• respects network communication structure

20 / 54

Interpretations of consensus scheme

• gradient descent on instantaneous cost

J(θ̂1, . . . , θ̂n) =

n∑

i=1

(ŷi (t)− yi (t))
2

︸ ︷︷ ︸
identification objective

+
∑

{vi ,vj}∈E

1

2
aij‖θ̂j(t)− θ̂i (t)‖

2
2

︸ ︷︷ ︸
disagreement objective

• distributed PD control

• dynamical model fusion (cf. sensor fusion)

• augmented Lagrangian flow

minimize

n∑

i=1

(ŷi (t)− yi (t))
2

subject to θ̂j(t)− θ̂i (t) = 0, i , j = 1, . . . , n

21 / 54

Convergence

candidate Lyapunov function:

V (∆θ) =

n∑

i=1

∆θTi ∆θi

require:

• connected communication graph G

• bounded (uniformly cts) regressors

• collective persistence of excitation

rate determined by:

• algebraic connectivity of G

• minimum level of collective persistence of excitation

22 / 54

Collective persistence of excitation

proof idea:

• error dynamics are (for θ, θi ∈ R1)

d

dt
∆θ(t) = −(L︸︷︷︸

rank n−1

+γΦ(t))∆θ(t)

• for ∆θ → 0, bound in every direction w ∈ Rn

wT

(
1

t − t0

∫ t

t0

L+ γΦ(τ) dτ

)
w > 0

• collective PE: there exist positive real numbers m1,m2 > 0 such
that for all t0 ≥ 0 and t > t0 the matrix inequality

m2I �
1

t − t0

∫ t

t0

n∑

i=1

φi (τ)φi (τ)
T dτ � m1I

23 / 54

Excitation can be moved around

the following all imply parameter convergence:

• enlightened: a few φi are persistently exciting,

• total: every φi is persistently exciting,

• intermittent: there exists an unbounded sequence of times t1, t2, . . .
such that some φi obeys the collective PE condition in each interval
[tk , tk+1],

• collaborative: none of the φi is persistently exciting, but the
collective PE condition still holds.

enlightened total intermittent collaborative

24 / 54

Example: collaborative PE (w/o and w/ consensus)

0 1 2 3 4 5
−2

−1

0

1

2

0 1 2 3 4 5
−2

−1

0

1

2

t

t

es
ti
m
a
te

es
ti
m
a
te

estimates of θ1

estimates of θ2

true

ag. 1

ag. 2

ag. 3

0 1 2 3 4 5
−2

−1

0

1

2

0 1 2 3 4 5
−2

−1

0

1

2

t

t

es
ti
m
a
te

es
ti
m
a
te

estimates of θ1

estimates of θ2

true

ag. 1

ag. 2

ag. 3

25 / 54

Example: collaborative PE error curves

0 0.5 1 1.5 2 2.5 3 3.5
0

0.5

1

1.5

ag. 1

ag. 2

ag. 3

|∆yi |

‖∆
θ i
‖ 2

parameter error vs. prediction error

26 / 54

Rate bound

take direction w = α1/
√
n

︸ ︷︷ ︸

consensus subspace

+
∑n

j=2 βjvj

0.75 0.8 0.85 0.9 0.95 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

φ1, φ2, φ3
φ⋆
1 , φ⋆

2 , φ⋆
3

achievable

α

ra
te

co
n
st
a
n
t

rate ≥ inf|α|≤1 max
{

λ2(1 − α2), γ α2

n
m1 − 2γm2

√

α2
n

(1 − α2)
}

27 / 54

Model reference adaptive control

• Van der Pol (nonlinear) oscillators (n of them)

ẍi = −xi + µ(1− x2i)ẋi + ui , i = 1, . . . , n

• reference model for each oscillator (place poles at −1± j)

ẍ refi = −2(x refi + ẋ refi), i = 1, . . . , n

• regressors
φ(xi) = (1− x2i)ẋi , i = 1, . . . , n

• adaptation: two control gains per agent & µ > 0

• consensus on µ only

28 / 54

Model reference adaptive control

−3 −2 −1 0 1 2 3
−6

−4

−2

0

2

4

6

x

ẋ

phase portrait

random initial conditions, n = 5 agents, open loop

29 / 54

Model reference adaptive control

−3 −2 −1 0 1 2 3
−6

−4

−2

0

2

4

6

x

ẋ

phase portrait

random initial conditions, n = 10 agents, open loop

29 / 54

Model reference adaptive control

−3 −2 −1 0 1 2 3
−6

−4

−2

0

2

4

6

x

ẋ

phase portrait

random initial conditions, n = 15 agents, open loop

29 / 54

Model reference adaptive control

−3 −2 −1 0 1 2 3
−6

−4

−2

0

2

4

6

x

ẋ

phase portrait

random initial conditions, n = 20 agents, open loop

29 / 54

Model reference adaptive control

−3 −2 −1 0 1 2 3
−6

−4

−2

0

2

4

6

x

ẋ

phase portrait

random initial conditions, n = 5 agents, MRAC

30 / 54

Model reference adaptive control

−3 −2 −1 0 1 2 3
−6

−4

−2

0

2

4

6

x

ẋ

phase portrait

random initial conditions, n = 10 agents, MRAC

30 / 54

Model reference adaptive control

−3 −2 −1 0 1 2 3
−6

−4

−2

0

2

4

6

x

ẋ

phase portrait

random initial conditions, n = 15 agents, MRAC

30 / 54

Model reference adaptive control

−3 −2 −1 0 1 2 3
−6

−4

−2

0

2

4

6

x

ẋ

phase portrait

random initial conditions, n = 20 agents, MRAC

30 / 54

Model reference adaptive control

−3 −2 −1 0 1 2 3
−6

−4

−2

0

2

4

6

x

ẋ

phase portrait

random initial conditions, n = 5 agents, MRAC + µ-consensus

31 / 54

Model reference adaptive control

−3 −2 −1 0 1 2 3
−6

−4

−2

0

2

4

6

x

ẋ

phase portrait

random initial conditions, n = 10 agents, MRAC + µ-consensus

31 / 54

Model reference adaptive control

−3 −2 −1 0 1 2 3
−6

−4

−2

0

2

4

6

x

ẋ

phase portrait

random initial conditions, n = 15 agents, MRAC + µ-consensus

31 / 54

Model reference adaptive control

−3 −2 −1 0 1 2 3
−6

−4

−2

0

2

4

6

x

ẋ

phase portrait

random initial conditions, n = 20 agents, MRAC + µ-consensus

31 / 54

Model reference adaptive control

0 5 10 15
−3

−2

−1

0

1

2

3

4

5

t

µ̂

parameter estimates

random initial conditions, n = 5 agents, MRAC

32 / 54

Model reference adaptive control

0 5 10 15
−3

−2

−1

0

1

2

3

4

5

t

µ̂

parameter estimates

random initial conditions, n = 10 agents, MRAC

32 / 54

Model reference adaptive control

0 5 10 15
−3

−2

−1

0

1

2

3

4

5

t

µ̂

parameter estimates

random initial conditions, n = 15 agents, MRAC

32 / 54

Model reference adaptive control

0 5 10 15
−3

−2

−1

0

1

2

3

4

5

t

µ̂

parameter estimates

random initial conditions, n = 20 agents, MRAC

32 / 54

Model reference adaptive control

0 5 10 15
−3

−2

−1

0

1

2

3

4

5

t

µ̂

parameter estimates

random initial conditions, n = 5 agents, MRAC + µ-consensus

33 / 54

Model reference adaptive control

0 5 10 15
−3

−2

−1

0

1

2

3

4

5

t

µ̂

parameter estimates

random initial conditions, n = 10 agents, MRAC + µ-consensus

33 / 54

Model reference adaptive control

0 5 10 15
−3

−2

−1

0

1

2

3

4

5

t

µ̂

parameter estimates

random initial conditions, n = 15 agents, MRAC + µ-consensus

33 / 54

Model reference adaptive control

0 5 10 15
−3

−2

−1

0

1

2

3

4

5

t

µ̂

parameter estimates

random initial conditions, n = 20 agents, MRAC + µ-consensus

33 / 54

Summary

• simple idea: defined by

θ̂(t+1) := classical update rule + consensus

• fundamentally nonlinear analysis and tools (mature theory)

• future directions:

• quantitative analysis of noise effects (often) unchanged
• engineer systems where the network does not fight adaptation
• adaptation: graceful degradation when network fails
• network: source of extra performance and robustness

34 / 54

Experiments with flying machines

35 / 54

Approximate Dynamic Programming with Guarantees

36 / 54

Finite state Markov Decision Processes

• finite state space X = {1, . . . , n}

• finite action space U(i) ⊆ U = {1, . . . ,m} available at each state i

• probability of transition pij(u) from state i to state j under control
action u ∈ U(i)

• incurred stage cost g(i , u, j)

example. gridworld

1 2 3

4 5 6

R2

R1

X = {1, . . . , 6}, U = {N, S ,E ,W }, pij(u) ∈ {0.8, 0.1, 0.1}

37 / 54

Deterministic policies

A policy is a sequence π = {µ0, µ1, . . .} where each µt : X → U is a
function that maps a state i to an available action in U(i).

• Given a policy π, the sequence of states {i0, i1, . . .} is a Markov
chain with transition probabilities

P(it+1 = j | it = i) = pij(µt(i)).

• for a given policy π = {µ0, µ1, . . .}, we should have

n∑

j=1

pij(µt(i)) = 1, for all i = 1, . . . , n.

example. feasible gridworld policy that gets to R2

µt(1) = 2, µt(2) = 3, µt(3) = 3,

µt(4) = 5, µt(5) = 6, µt(6) = 3, for all t = 0, 1, . . .

38 / 54

Policy cost and stationary policies

• The expected cost of a policy when starting from an initial state i is

V π(i) = E

[
∞∑

t=0

γtg(it , µt(it), it+1)
∣∣∣ i0 = i

]
,

where γ ∈ (0, 1] is a discount factor.

• for the infinite horizon case, it is often convenient to consider
stationary policies π = {µ, µ, . . .} and γ < 1.

example. the policy µt = µ from the last slide is stationary since it is the
same for all t = 0, 1, . . .

39 / 54

Value function

The value function is defined as

V π(i) = E

[
∞∑

t=0

γtg(it , µt(it), it+1)
∣∣∣ i0 = i

]
,

=

∞∑

t=0

n∑

j=1

pit j(µt(it))γ
tg(it , µt(it), j)

• we can think of V π as a vector in Rn, where each component V π(i)
corresponds to the expected cost-to-go starting at state i

• The goal is to find a policy that minimizes the expected cost-to-go,

V ∗(i) = min
π

V π(i).

40 / 54

Bellman operator

The optimal cost-to-go satisfies the Bellman equation

V ∗(i) = min
u∈U(i)

E[g(i , u, j) + γV ∗(j) | i , u]

= min
u∈U(i)

n∑

j=1

pij(u)(g(i , u, j) + γV ∗(j)), for all i = 1, . . . , n,

with the corresponding optimal policy at step t given by

µ∗
t (i) = argmin

u∈U(i)

E[g(i , u, j) + γV ∗(j) | i , u], for all i = 1, . . . , n.

41 / 54

Value iteration

For any value function vector (V (1), . . . ,V (n)) define the vector T V by
the Bellman operator,

(T V)(i) = min
u∈U(i)

E[g(i , u, j) + γV (j) | i , u].

Thus the Bellman equation reads V = T V .

• value iteration

V (k+1) = T V (k), k = 0, 1,

• for any starting guess V (0), the sequence {V (0),V (1), . . .} converges
to V ∗.

• Under some regularity assumptions and an infinite horizon, this
equation has a unique solution V ∗ with a corresponding stationary
policy π∗.

42 / 54

Approximating from below

Any function V that satisfies the Bellman inequality

V ≤ T V

automatically satisfies V ≤ V ∗

• V is a componentwise lower bound on V ∗

• recursively apply T to both sides and use the monotonicity property,

V ≤ T V ≤ T 2V ≤ · · · = V ∗.

• monotonicity. if V1 ≤ V2, then T V1 ≤ T V2 (componentwise)

• the Bellman inequality defines a class of underestimators of V ∗, one
of which is V ∗ itself

• underestimators capture a class capture a performance bound on the
original decision problem

• trivial performance bound: V = 0.

43 / 54

Bounds on the value function

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

approx
true

V
al
u
e
fu
n
ct
io
n

x −1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
0.4

0.6

0.8

1

1.2

1.4

xy

log(Value function)

44 / 54

Approximating from above

Similarly, any function that satisfies the reverse Bellman inequality

T V ≤ V

automatically satisfies V ∗ ≤ V .

• componentwise upper bound on V ∗

• recursively apply T to both sides of and use the monotonicity
property,

V ∗ = · · · ≤ T 2V ≤ T V ≤ V .

• overestimators correspond to suboptimal policies, because their
value is greater than or equal to the optimal value

45 / 54

Bound optimization by linear programming

We can attempt to recover V ∗ by optimizing over the class of value
function underestimators,

maximize V

subject to V ≤ T V ,

If the transition probabilities and stage costs are known, then we can
rewrite as a linear program (LP),

maximize

n∑

i=1

w(i)V (i)

subject to V (i) ≤

n∑

j=1

pij(u)(g(i , u, j) + V (j)),

∀i = 1, . . . , n, ∀u ∈ U(i),

• variables V (1), . . . ,V (n)
• weights w(1), . . . ,w(n) are arbitrary (as long as they are positive)
• number of linear constraints is O(nm), number of variables O(n)

46 / 54

Optimization with known transition probabilities

Related underapproximation LP

maximize

n∑

i=1

w(i)

N∑

k=1

αkφk(i)

subject to

N∑

k=1

αkφk(i) ≤

n∑

j=1

pij(u)

(
g(i , u, j) +

N∑

k=1

αkφk(j)

)
,

∀i = 1, . . . , n, ∀u ∈ U(i),

• restrict the class of underestimators by further specifying an
approximating basis,

Ṽ (i) =

N∑

k=1

αkφk(i), φk : X → R

• number of linear constraints O(nm), number of variables O(N)

• ideally, N ≪ n

• true value V ∗ is recovered if it is in the span of the basis functions

47 / 54

Uniform approximation guarantees

To get guarantees on approximation accuracy, simultaneously find
functions V+ and V− in an approximating class (e.g., relative to a fixed
basis) such that

V− ≤ V ∗ ≤ V+,

and the difference between V+ and V− is as small as possible:

minimize maxi {V
+(i)− V−(i)}

subject to V− ≤ T V−

T V+ ≤ V+

V−,V+ ∈ C

• variables V+ and V−

• C ⊆ Rn represents (e.g., basis) restrictions on the approximating
class

• optimal value ǫ∗ is measure of approximation error over all states

• extension. operate at specified level of suboptimality ≤ ǫ

48 / 54

Aside: robust LP

Consider a linear program in inequality form,

minimize cT x

subject to aTi x ≤ bi , i = 1, . . . ,m

over the variable x ∈ Rn, where c , bi are fixed, and ai are known to lie in
ellipsoids,

ai ∈ Ei = {ai + Piu | ‖u‖2 ≤ 1}.

robust linear programming

minimize cT x

subject to aTi x ≤ bi , for all ai ∈ Ei , i = 1, . . . ,m

49 / 54

Aside: robust LP

We can rewrite the robust LP,

minimize cT x

subject to aTi x ≤ bi , for all ai ∈ Ei , i = 1, . . . ,m

as an SOCP,

minimize cT x

subject to aTi x + ‖PT
i x‖2 ≤ bi , i = 1, . . . ,m

• notably, the problem is convex

• additional norm terms act as regularization constraints

• efficient solution techniques for medium to large m, n.

50 / 54

Optimization with unknown transition probabilities

If the transition probabilities are known to lie in an ellipsoid, then we can
rewrite the underapproximation LP

maximize

n∑

i=1

w(i)V (i)

subject to V (i) ≤

n∑

j=1

pij(u)(g(i , u, j) + V (j)),

∀i = 1, . . . , n, ∀u ∈ U(i),

as a robust LP (viz., SOCP)

• ellipsoidal outbound probabilities: pi :(u) ∈ Ei (u), ∀i , ∀u

• special case: lower and upper bounds on transition probabilities
pij(u) ∈ [p

ij
(u), pij(u)]

• double-sided LP has guaranteed approximation error via objective

51 / 54

Example

φk(i) != 0

φk(i) = 0 R2

R1

• basis vectors φk encode state membership constraints

• pooling over free regions decreases basis complexity

• policy is robust wrt perturbations in pij(u)

• quantitative measure of suboptimality

52 / 54

Extensions

• Specified basis functions for state constraints

• automaton product MPDs for logic specifications (slightly
generalized version of [Wolff et al.’12]). The engineering challenge is
to pick appropriate basis vectors.

• enforce the LP constraints only at certain specified states—more
tractable with loss of bound guarantees.

• attempt to discover pij(u) similarly to [Fu et al., ’15] PAC-MDP
learning, either by simulation or repeated probing.

• It is also possible to talk about the probability of satisfaction by
incorporating it, directly or by proxy, into the additive stage costs.

• Similarly, a proxy for exploration can also be part of the objective.

53 / 54

Thanks!

more information: Ivan Papusha, Richard M. Murray

www.ivanpapusha.com

funding: NDSEG, Powell Foundation, STARnet/TerraSwarm, Boeing

54 / 54

