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Optimal control + adaptation + multiagent
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Optimal control + adaptation + multiagent + networking
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Applications of networked adaptive systems

• smartgrid: bootstrapping, disturbance rejection

• circuits: high performance phase locked loops

• robotics: distributed bootstrapping with consensus constraints

• adaptive systems: collaborative system identification
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Learning safely: why?

Consider a (discrete time) linear dynamical system with state xt ∈ Rn

and control input ut ∈ Rm, for all t = 0, 1, . . .,

xt+1 = Axt + But .

We wish to stabilize the system, xt → 0 as t → ∞. For simplicity,
assume BTB is invertible.
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A “reasonable” control scheme

At each time t, choose a control input ut to make ‖xt+1‖
2
2 small,

ut ∈ argmin
ut∈Rm

‖Axt + But‖
2
2

• in this case ut = ut(xt) only depends on the current state at time t

• optimal input is a constant state feedback

ut = −(BTB)−1BTAxt

• closed loop system

xt+1 = (A− B(BTB)−1BTA︸ ︷︷ ︸
A+BK

)xt , t = 0, 1, . . .
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Example instance
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Identification model

• input-output model
y(t) = θu(t)

• at each time t ≥ 0:

• select input u(t) ∈ R
• measure y(t) ∈ R

• goal: determine θ

y(t) = θu(t) y(t)u(t)
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Identification approach

• time-varying estimate θ̂(t) ∈ R

• simulated output
ŷ(t) = θ̂(t)u(t)

• our task: make simulator match true model

(ŷ(t)− y(t))2 → 0 as t → ∞

y(t) = θu(t) y(t)
u(t)

ŷ(t)ŷ(t) = θ̂(t)u(t)
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Unconstrained minimization

minimize the instantaneous cost

J(θ̂(t)) =
1

2
(ŷ(t)− y(t))2

=
1

2
(θ̂(t)− θ︸ ︷︷ ︸

∆θ(t)

)2u(t)2

by gradient descent on θ̂(t)

d

dt
θ̂(t) := −γ

∂J

∂θ̂(t)

= −γ∆θ(t)u(t)2,

where γ > 0 is the learning rate
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Gradient learning rule

• gradient rule can be implemented online

d

dt
θ̂(t) = −γ∆θ(t)u(t)2

= −γ(ŷ(t)− y(t)︸ ︷︷ ︸
∆y(t)

)u(t)

• output error: ∆y(t)

• parameter error: ∆θ(t)

• fact: output error (usually) converges, ∆y(t) → 0 as t → ∞
(proof: Lyapunov argument V (∆θ) = ∆θ2)

• question: when does parameter error converge?

∆θ(t)
?
→ 0 as t → ∞
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Typical error curves
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Simple condition on parameter convergence

• parameter error dynamics

d

dt
∆θ(t) =

d

dt

(
θ̂(t)− θ

)

= −γ∆θ(t)u(t)2

⇓

∆θ(t) = exp

{
−γ

∫ t

0

u(τ)2 dτ

}
∆θ(0)

• parameter error converges if u(t) is persistently exciting:

lim
t→∞

∫ t

0

u(τ)2 dτ = +∞
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Checking the memoryless system

• choose input u(t) = c , where c 6= 0 is a real constant

lim
t→∞

∫ t

0

u(τ)2 dτ = lim
t→∞

∫ t

0

c2 dτ

= lim
t→∞

c2t

= +∞ X

• excitation condition:

u(t) = c is persistently exciting ⇔ c 6= 0

• persistence of excitation guarantees parameter convergence
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Multiple agent identification model

• n agents labeled i = 1, . . . , n

• at time t ≥ 0, agent i can measure xi (t) ∈ Rq and yi (t) ∈ R

• regressor: φ : Rq → Rp

• parameters: θ ∈ Rp

• true output:
yi (t) = θTφ(xi (t)), i = 1, . . . , n

• simulated output:

ŷi (t) = θ̂i (t)
Tφ(xi (t)), i = 1, . . . , n

• goal: parameter convergence ‖θi (t)− θ‖ → 0 for all i = 1, . . . , n.
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Multiple agent identification model

ui(t)
yi(t)yi(t) = θui(t)

ŷi(t) = θ̂i(t)ui(t) ŷi(t)

ui(t)
yi(t)yi(t) = θui(t)

ŷi(t) = θ̂i(t)ui(t) ŷi(t)
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Multiple agent consensus scheme

• each agent’s parameter estimate is a sum of two terms

d

dt
θ̂i = −γφ(xi )(ŷi − yi )︸ ︷︷ ︸

local information

+
∑

j∈Ni

aij(θ̂j − θ̂i )

︸ ︷︷ ︸
neighboring information

• can be implemented online

• respects network communication structure
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Interpretations of consensus scheme

• gradient descent on instantaneous cost

J(θ̂1, . . . , θ̂n) =

n∑

i=1

(ŷi (t)− yi (t))
2

︸ ︷︷ ︸
identification objective

+
∑

{vi ,vj}∈E

1

2
aij‖θ̂j(t)− θ̂i (t)‖

2
2

︸ ︷︷ ︸
disagreement objective

• distributed PD control

• dynamical model fusion (cf. sensor fusion)

• augmented Lagrangian flow

minimize

n∑

i=1

(ŷi (t)− yi (t))
2

subject to θ̂j(t)− θ̂i (t) = 0, i , j = 1, . . . , n
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Convergence

candidate Lyapunov function:

V (∆θ) =

n∑

i=1

∆θTi ∆θi

require:

• connected communication graph G

• bounded (uniformly cts) regressors

• collective persistence of excitation

rate determined by:

• algebraic connectivity of G

• minimum level of collective persistence of excitation
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Collective persistence of excitation

proof idea:

• error dynamics are (for θ, θi ∈ R1)

d

dt
∆θ(t) = −( L︸︷︷︸

rank n−1

+γΦ(t))∆θ(t)

• for ∆θ → 0, bound in every direction w ∈ Rn

wT

(
1

t − t0

∫ t

t0

L+ γΦ(τ) dτ

)
w > 0

• collective PE: there exist positive real numbers m1,m2 > 0 such
that for all t0 ≥ 0 and t > t0 the matrix inequality

m2I �
1

t − t0

∫ t

t0

n∑

i=1

φi (τ)φi (τ)
T dτ � m1I
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Excitation can be moved around

the following all imply parameter convergence:

• enlightened: a few φi are persistently exciting,

• total: every φi is persistently exciting,

• intermittent: there exists an unbounded sequence of times t1, t2, . . .
such that some φi obeys the collective PE condition in each interval
[tk , tk+1],

• collaborative: none of the φi is persistently exciting, but the
collective PE condition still holds.

enlightened total intermittent collaborative
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Example: collaborative PE (w/o and w/ consensus)
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Example: collaborative PE error curves
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Rate bound

take direction w = α1/
√
n

︸ ︷︷ ︸

consensus subspace

+
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Model reference adaptive control

• Van der Pol (nonlinear) oscillators (n of them)

ẍi = −xi + µ(1− x2i )ẋi + ui , i = 1, . . . , n

• reference model for each oscillator (place poles at −1± j)

ẍ refi = −2(x refi + ẋ refi ), i = 1, . . . , n

• regressors
φ(xi ) = (1− x2i )ẋi , i = 1, . . . , n

• adaptation: two control gains per agent & µ > 0

• consensus on µ only
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Model reference adaptive control
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Model reference adaptive control
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Model reference adaptive control
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Model reference adaptive control
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Model reference adaptive control
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Model reference adaptive control
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Model reference adaptive control
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Model reference adaptive control
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Model reference adaptive control
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Summary

• simple idea: defined by

θ̂(t+1) := classical update rule + consensus

• fundamentally nonlinear analysis and tools (mature theory)

• future directions:

• quantitative analysis of noise effects (often) unchanged
• engineer systems where the network does not fight adaptation
• adaptation: graceful degradation when network fails
• network: source of extra performance and robustness
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Experiments with flying machines
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Approximate Dynamic Programming with Guarantees
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Finite state Markov Decision Processes

• finite state space X = {1, . . . , n}

• finite action space U(i) ⊆ U = {1, . . . ,m} available at each state i

• probability of transition pij(u) from state i to state j under control
action u ∈ U(i)

• incurred stage cost g(i , u, j)

example. gridworld

1 2 3

4 5 6

R2

R1

X = {1, . . . , 6}, U = {N, S ,E ,W }, pij(u) ∈ {0.8, 0.1, 0.1}
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Deterministic policies

A policy is a sequence π = {µ0, µ1, . . .} where each µt : X → U is a
function that maps a state i to an available action in U(i).

• Given a policy π, the sequence of states {i0, i1, . . .} is a Markov
chain with transition probabilities

P(it+1 = j | it = i) = pij(µt(i)).

• for a given policy π = {µ0, µ1, . . .}, we should have

n∑

j=1

pij(µt(i)) = 1, for all i = 1, . . . , n.

example. feasible gridworld policy that gets to R2

µt(1) = 2, µt(2) = 3, µt(3) = 3,

µt(4) = 5, µt(5) = 6, µt(6) = 3, for all t = 0, 1, . . .
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Policy cost and stationary policies

• The expected cost of a policy when starting from an initial state i is

V π(i) = E

[
∞∑

t=0

γtg(it , µt(it), it+1)
∣∣∣ i0 = i

]
,

where γ ∈ (0, 1] is a discount factor.

• for the infinite horizon case, it is often convenient to consider
stationary policies π = {µ, µ, . . .} and γ < 1.

example. the policy µt = µ from the last slide is stationary since it is the
same for all t = 0, 1, . . .
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Value function

The value function is defined as

V π(i) = E

[
∞∑

t=0

γtg(it , µt(it), it+1)
∣∣∣ i0 = i

]
,

=

∞∑

t=0

n∑

j=1

pit j(µt(it))γ
tg(it , µt(it), j)

• we can think of V π as a vector in Rn, where each component V π(i)
corresponds to the expected cost-to-go starting at state i

• The goal is to find a policy that minimizes the expected cost-to-go,

V ∗(i) = min
π

V π(i).
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Bellman operator

The optimal cost-to-go satisfies the Bellman equation

V ∗(i) = min
u∈U(i)

E[g(i , u, j) + γV ∗(j) | i , u]

= min
u∈U(i)

n∑

j=1

pij(u)(g(i , u, j) + γV ∗(j)), for all i = 1, . . . , n,

with the corresponding optimal policy at step t given by

µ∗
t (i) = argmin

u∈U(i)

E[g(i , u, j) + γV ∗(j) | i , u], for all i = 1, . . . , n.
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Value iteration

For any value function vector (V (1), . . . ,V (n)) define the vector T V by
the Bellman operator,

(T V )(i) = min
u∈U(i)

E[g(i , u, j) + γV (j) | i , u].

Thus the Bellman equation reads V = T V .

• value iteration

V (k+1) = T V (k), k = 0, 1, . . . .

• for any starting guess V (0), the sequence {V (0),V (1), . . .} converges
to V ∗.

• Under some regularity assumptions and an infinite horizon, this
equation has a unique solution V ∗ with a corresponding stationary
policy π∗.
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Approximating from below

Any function V that satisfies the Bellman inequality

V ≤ T V

automatically satisfies V ≤ V ∗

• V is a componentwise lower bound on V ∗

• recursively apply T to both sides and use the monotonicity property,

V ≤ T V ≤ T 2V ≤ · · · = V ∗.

• monotonicity. if V1 ≤ V2, then T V1 ≤ T V2 (componentwise)

• the Bellman inequality defines a class of underestimators of V ∗, one
of which is V ∗ itself

• underestimators capture a class capture a performance bound on the
original decision problem

• trivial performance bound: V = 0.
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Bounds on the value function
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Approximating from above

Similarly, any function that satisfies the reverse Bellman inequality

T V ≤ V

automatically satisfies V ∗ ≤ V .

• componentwise upper bound on V ∗

• recursively apply T to both sides of and use the monotonicity
property,

V ∗ = · · · ≤ T 2V ≤ T V ≤ V .

• overestimators correspond to suboptimal policies, because their
value is greater than or equal to the optimal value
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Bound optimization by linear programming

We can attempt to recover V ∗ by optimizing over the class of value
function underestimators,

maximize V

subject to V ≤ T V ,

If the transition probabilities and stage costs are known, then we can
rewrite as a linear program (LP),

maximize

n∑

i=1

w(i)V (i)

subject to V (i) ≤

n∑

j=1

pij(u)(g(i , u, j) + V (j)),

∀i = 1, . . . , n, ∀u ∈ U(i),

• variables V (1), . . . ,V (n)
• weights w(1), . . . ,w(n) are arbitrary (as long as they are positive)
• number of linear constraints is O(nm), number of variables O(n)
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Optimization with known transition probabilities

Related underapproximation LP

maximize

n∑

i=1

w(i)

N∑

k=1

αkφk(i)

subject to

N∑

k=1

αkφk(i) ≤

n∑

j=1

pij(u)

(
g(i , u, j) +

N∑

k=1

αkφk(j)

)
,

∀i = 1, . . . , n, ∀u ∈ U(i),

• restrict the class of underestimators by further specifying an
approximating basis,

Ṽ (i) =

N∑

k=1

αkφk(i), φk : X → R

• number of linear constraints O(nm), number of variables O(N)

• ideally, N ≪ n

• true value V ∗ is recovered if it is in the span of the basis functions
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Uniform approximation guarantees

To get guarantees on approximation accuracy, simultaneously find
functions V+ and V− in an approximating class (e.g., relative to a fixed
basis) such that

V− ≤ V ∗ ≤ V+,

and the difference between V+ and V− is as small as possible:

minimize maxi {V
+(i)− V−(i)}

subject to V− ≤ T V−

T V+ ≤ V+

V−,V+ ∈ C

• variables V+ and V−

• C ⊆ Rn represents (e.g., basis) restrictions on the approximating
class

• optimal value ǫ∗ is measure of approximation error over all states

• extension. operate at specified level of suboptimality ≤ ǫ
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Aside: robust LP

Consider a linear program in inequality form,

minimize cT x

subject to aTi x ≤ bi , i = 1, . . . ,m

over the variable x ∈ Rn, where c , bi are fixed, and ai are known to lie in
ellipsoids,

ai ∈ Ei = {ai + Piu | ‖u‖2 ≤ 1}.

robust linear programming

minimize cT x

subject to aTi x ≤ bi , for all ai ∈ Ei , i = 1, . . . ,m
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Aside: robust LP

We can rewrite the robust LP,

minimize cT x

subject to aTi x ≤ bi , for all ai ∈ Ei , i = 1, . . . ,m

as an SOCP,

minimize cT x

subject to aTi x + ‖PT
i x‖2 ≤ bi , i = 1, . . . ,m

• notably, the problem is convex

• additional norm terms act as regularization constraints

• efficient solution techniques for medium to large m, n.
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Optimization with unknown transition probabilities

If the transition probabilities are known to lie in an ellipsoid, then we can
rewrite the underapproximation LP

maximize

n∑

i=1

w(i)V (i)

subject to V (i) ≤

n∑

j=1

pij(u)(g(i , u, j) + V (j)),

∀i = 1, . . . , n, ∀u ∈ U(i),

as a robust LP (viz., SOCP)

• ellipsoidal outbound probabilities: pi :(u) ∈ Ei (u), ∀i , ∀u

• special case: lower and upper bounds on transition probabilities
pij(u) ∈ [p

ij
(u), pij(u)]

• double-sided LP has guaranteed approximation error via objective
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Example

φk(i) != 0

φk(i) = 0 R2

R1

• basis vectors φk encode state membership constraints

• pooling over free regions decreases basis complexity

• policy is robust wrt perturbations in pij(u)

• quantitative measure of suboptimality

52 / 54



Extensions

• Specified basis functions for state constraints

• automaton product MPDs for logic specifications (slightly
generalized version of [Wolff et al.’12]). The engineering challenge is
to pick appropriate basis vectors.

• enforce the LP constraints only at certain specified states—more
tractable with loss of bound guarantees.

• attempt to discover pij(u) similarly to [Fu et al., ’15] PAC-MDP
learning, either by simulation or repeated probing.

• It is also possible to talk about the probability of satisfaction by
incorporating it, directly or by proxy, into the additive stage costs.

• Similarly, a proxy for exploration can also be part of the objective.
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Thanks!

more information: Ivan Papusha, Richard M. Murray

www.ivanpapusha.com
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