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1 Introduction

Recent years have seen an explosion of interest in applications of sparse signal recovery and
low rank matrix completion, due in part to the compelling use of the nuclear norm as a
convex proxy for matrix rank. In some cases, minimizing the nuclear norm is equivalent
to minimizing the rank of a matrix, and can lead to exact recovery of the underlying rank
structure, see [Faz02, RFP10] for background. Even when exact recovery is not possible, the
results often lead to practically useful starting points of analysis.

Classical Principal Component Analysis (PCA) is one of very few rank-constrained prob-
lems that can be solved exactly (via the singular value decomposition). In classical PCA, one
would like to find the closest low-rank matrix (in spectral norm) to a given matrix. Because
it assumes the corresponding noise is small, however, classical PCA fails in cases where a
matrix is only a few sparse terms away from being low-rank, especially if the sparse terms
have large magnitude.

Robust PCA naturally addresses this failure of classical PCA by applying ℓ1-regularization
on the matrix entries and using the nuclear norm as a global underestimator of rank. Hence it
is robust to grossly corrupted observations of the underlying low-rank matrix. Under certain
conditions, Robust PCA results in exact recovery [CLMW09]. Robust PCA has a number
of existing applications in video surveillance, face recognition, semantic indexing, and col-
laborative filtering. For example, it can be used to automatically remove illumination from
multiple images of a face under different illumination conditions. However, the technique
requires solving a large optimization problem, with an objective that can be computationally
intensive to evaluate.

This work explores several large-scale methods for solving the Robust PCA problem via
Principal Component Pursuit (PCP), a convex optimization problem, and demonstrates its
use in background extraction tasks in video and point-cloud LIDAR data. The idea is to stack
the frames of data into a matrix, and then to find a low-rank approximation to the matrix
with sparse error. The low-rank part of the answer corresponds to the (static) background
parts of the video or 3D structure, and the sparse part to the (dynamic) foreground parts.
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One can then extract, classify, and track the sparse components, even in a multimodal
setting. Robust PCA can also be used as a drop-in for classical PCA in e.g., machine
learning applications, whenever the data contain many outliers.

2 Previous work

Solving the Robust PCA problem by PCP was studied by [CLMW09, RFP10], who give
conditions on exact recovery. Lin et al. [LCM09] and Arvind et al. [GLW+09] studied fast
algorithms based on the Alternating Direction Method of Multipliers (ADMM) and Nesterov-
style Accelerated Proximal Gradient (APG), see [BPC+10, Nes05, Nes07, BT09, Tse08] for
background. Interior point and SDP algorithms for dealing with the matrix norm were
considered by [LV09, RFP10]. Iterative reweighted least squares is an alternate approach
[MF10]. Peng et al. [PGW+10] give an extension to Robust PCA, called RASL, in the
context of simultaneous image alignment and low-rank approximation. The Fast SVD algo-
rithm [DFK+04, DKM06] with Lanczos-style iteration allows for approximate singular value
soft thresholding in the algorithm we propose. Dynamic object extraction from 3D point
cloud data has been studied in [TSS08, STS08]. Typical RANSAC-based applications can
be found in [FRS07] and [SRB08].

3 Robust PCA

To set up the problem, we let M ∈ Rm×n be a data matrix, where the j-th column of M
contains the (stacked) point coordinates from frame j, depending on the application. See
§5.2 and §5.3 for how to generate M in a particular application. We are interested in writing
M = L + S as a sum of of a low-rank matrix L and a sparse matrix S. The Robust PCA
problem is to solve

minimize rank(L) + λ card(S)
subject to L + S = M,

(1)

over the (matrix) variables L, S ∈ Rm×n, where the parameter λ > 0 trades off rank against
sparsity of the approximation. As it stands, the original problem is not convex, however, we
can consider a convex relaxation, known as Principal Component Pursuit (PCP),

minimize ‖L‖∗ + λ‖S‖1

subject to L + S = M,
(2)

where ‖L‖∗ =
∑

i σi(L) is the sum of the singular values of the matrix, also known as the
nuclear (or Ky Fan) norm, and ‖S‖1 =

∑

ij |Sij| is the ℓ1-norm of a matrix thought as
a vector. The variables are L, S ∈ Rm×n, while M encodes the problem data. For the

purposes of this work, the regularization parameter is fixed λ = 1/
√

max(m,n). In practice,
this parameter choice works very well for the applications we consider; justification for this
parameter selection can be found in [CLMW09].
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Robust PCA is in contrast to classical PCA in the sense that the latter solves the (non-
convex) problem,

minimize ‖M − L‖2

subject to rank(L) ≤ k,

with variable L, problem data M , and integer parameter k ≥ 1. In classical PCA, M is
approximated as a rank-k matrix with a small ℓ2-error. Classical PCA is not robust to gross
componentwise errors in the same way that Robust PCA is, since the former places a large
penalty on large errors, while the latter allows for a few large errors while making most errors
small. It is precisely the low-rank part and the small sparse errors that we are interested in
when we talk about differentiating background from foreground.

4 Algorithms

4.1 Interior point methods

The nuclear norm in the PCP problem admits representation as a semidefinite program via
the semidefinite embedding lemma [Faz02, §3.2]. The original non-convex problem 1 has the
equivalent formulation,

minimize (1/2) rank(diag(Y, Z)) + λ‖S‖1

subject to

[

Y L
LT Z

]

º 0, L + S = M

over the variables L, S ∈ Rm×n, and symmetric matrices Y ∈ Sm, Z ∈ Sn. Here º corre-
sponds to matrix inequality with respect to the positive semidefinite cone. Since Y, Z º 0,
taking the nuclear norm of a block-diagonal, positive semidefinite matrix is the same as
taking the trace. Therefore, the PCP problem is equivalent to a convex relaxation of the
above,

minimize (1/2) (Tr(Y ) + Tr(Z)) + λ‖S‖1

subject to

[

Y L
LT Z

]

º 0, L + S = M,

which is an SDP, for which a general-purpose interior point solver like SeDuMi or SDPT3
can be used. Such methods usually cannot be used for problem sizes m,n larger than 50
or so, due to the large computational burden involved in inverting the KKT system. Since
we are looking to apply PCP on matrices of size m,n ∼ 103 or more, a general purpose
interior-point method is intractable on current computers.

4.2 Subgradient methods

To get around the data size restriction, we can run a subgradient to solve the PCP problem,
with the equality constraint L + S = M eliminated,

minimize ‖L‖∗ + λ‖M − L‖1,
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over the single variable L. The optimal sparse term S⋆ is recovered from the optimal low-
rank term L⋆ by setting S⋆ = M − L⋆. To find a subgradient, we use the fact that ‖ · ‖∗ for
matrices is the dual norm of the ℓ2- or spectral norm. That is, for any matrix Z ∈ Rm×n,

‖Z‖∗ = sup{Tr(ZT X) | ‖X‖2 ≤ 1}.

If Z = UΣV T is the singular value decomposition of Z, then UV T is a subgradient of ‖Z‖∗.
This observation leads to an iterative method for solving the Principal Component Pursuit
problem by calculating subgradients at each step. The stepsize αk is chosen to be square
summable but not summable,

∞
∑

k=1

α2
k < ∞,

∞
∑

k=1

αk = ∞.

Algorithm: Subgradient Method

Initialize: L(1) = 11T

For k = 1, 2, . . .
1. Find the singular value decomposition: L(k) = U (k)Σ(k)V (k)T

2. Calculate a subgradient: G(k) = U (k)V (k)T − λ sign(M − L(k))
3. Update: L(k+1) = L(k) − αkG

(k)

A problem with the subgradient method, besides slow convergence, is the costly full SVD
executed at every step. One can approximate the SVD by a rank-k approximation k <
min(m,n), see [DFK+04, DKM06] for randomized methods of approximating the SVD that
lead to a stochastic subgradient method. Because approximating the SVD by these methods
leads to a biased subgradient estimate, however, the method is no longer guaranteed to
converge to the optimal value. In practice, we saw reasonable convergence to a (suboptimal)
answer using just the top singular vectors.

4.3 Alternating direction method of multipliers

As posed, the PCP problem admits natural decomposition into Alternating Direction Method
of Multipliers (ADMM) form, see [BPC+10] for background. The augmented Lagrangian for
the equality constrained PCP problem with penalty parameter ρ > 0 is

Lρ(L, S, Y ) = ‖L‖∗ + λ‖S‖1 + Tr(Y T (L + S − M)) + (ρ/2)‖L + S − M‖2
F

= ‖L‖∗ + λ‖S‖1 + (ρ/2)‖L + S − M + W‖2
F + const,

where Y = ρW ∈ Rm×n is a dual variable. The scaled dual form of ADMM follows.
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Algorithm: ADMM

Initialize: L(1) = 11T , S(1) = M − L(1), and W (1) = (1/ρ)11T

For k = 1, 2, . . .

1. L(k+1) := argminL

(

‖L‖∗ + (ρ/2)‖L + S(k) − M + W (k)‖2
F

)

2. S(k+1) := argminS

(

λ‖S‖1 + (ρ/2)‖L(k+1) + S − M + W (k)‖2
F

)

3. W (k+1):= W (k) + (L(k+1) + S(k+1) − M) (dual update)

Each of the minimizations has a closed form in terms of the soft thresholding operator, Sκ,
κ > 0, where

Sκ(x) =











x − κ x > κ
0 |x| ≤ κ
x + κ x < −κ.

The minimization in step 1 corresponds to a proximal operator of the nuclear norm evaluated
at M −S(k) −W (k). The prox is calculated by soft thresholding on the singular values of the
matrix. That is, if σ1, . . . , σr are the singular values of M − S(k) −W (k), then the L-update,
in terms of the SVD, is

L(k+1) := U diag(S1/ρ(σ1), . . . , S1/ρ(σr))V
T , UΣV T = M − S(k) − W (k).

Similarly, step 2 is computed by (elementwise) soft thresholding, with i, j-entry of the matrix
S(k+1) given by the update,

S
(k+1)
ij := Sλ/ρ

(

Mij − L
(k+1)
ij − W

(k)
ij

)

, i = 1, . . . ,m, j = 1, . . . , n.

Given an upper bound on the rank of the matrix, ADMM combined with a fast SVD
routine (Lanczos iteration) and adaptive stepsize (see [BPC+10, §3.4.1]) yields a state of the
art fast method for solving PCP.

4.4 Nesterov accelerated methods

To accelerate convergence of the subgradient method, a Nesterov-style proximal gradient
algorithm can be used, see [Tse08] for a review of current methods. With careful tuning,
accelerated algorithm can have theoretical O(1/k2) convergence, where k is the number of
iterations. If we define f : Rm×n → R as the objective

f(L) = ‖L‖∗ + λ‖M − L‖1,

we can then define a “Nesterized” proximal point algorithm for minimizing the nonsmooth
convex f . Here the stepsize parameters are given by θk = 2/(k + 1), and tk = t is held
constant for all iterations.
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Algorithm: (Accelerated) Proximal Point

Initialize: x(0) = y(0) ∈ dom f

For k = 1, 2, . . .

1. x(k) := proxtkf (y
(k−1)) = argminu

(

f(u) + (1/2tk)‖u − y(k−1)‖2
2

)

2. v(k) := x(k−1) + (1/θk)(x
(k) − x(k−1))

3. y(k) := (1 − θk+1)x
(k) + θk+1v

(k)

The ℓ2-norm in step 1 becomes the Frobenius norm for the matrix case. Unfortunately,
the accelerated proximal point algorithm does not fare as well as we might have hoped for
the PCP problem; poor convergence has been seen in [LCM09], as well, although adaptive
restarting might work well [O’D11].

5 Results

5.1 Small example

As a toy example, we solve the PCP problem for a small M = L0 + S0 ∈ R30×10, where
we picked a random L0 with rank(L0) = 3 and random S0 with 10% nonzero entries. The
optimal objective value f ⋆ was calculated using 53 iterations of an interior-point method.
Figure 1 shows typical convergence results. Both ADMM and Accelerated Proximal Gradient
(APG) reach a good initial accuracy within about 100 iterations, however, ADMM and the
subgradient method eventually reach better precision than APG.

Such convergence curves are typical for larger data sets as well. The inability of APG
to give good accuracy lies in part due to the lack of restarting, which has been shown to
perform well in other applications. Furthermore, different choices for the stepsize parameter
θk can lead to better convergence in APG.

5.2 Aligned video

Video fits nicely within the Robust PCA framework, assuming the video frames are aligned
to one another, the action in the foreground is continuous, and the background constitutes
most of the static data. Note that in particular, these assumptions disallow sudden cuts to
a different scene or scenes with camera movement.

Here, we stack the j-th frame of the video as the j-th column of M . PCP deals well with
both color and grayscale video. Using color increases the vertical dimension m by a factor
of 3 from grayscale, increasing the cost of each iteration. Results of PCP applied to a video
of tennis point are presented in Figure 2.
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Figure 1: Convergence of a Subgradient, ADMM, and Accelerated Proximal Gradient
(APG) algorithms for a small example data set M ∈ R30×10.

Figure 2: Frames 5 (left) and 20 (right) of a video of two tennis players. Here the
video contains 100 frames, each of which has 250×135×3 (color) pixels, implying M ∈
R97200×100. Visualization of the original frame (top), the low-rank part L (middle),
and the sparse part S (bottom) for each frame has allowed the extraction of the court
(background) and the moving players (foreground), as well as the ball, within ∼ 40
iterations of ADMM (∼ 3 minutes).
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5.3 LIDAR range data

Robust PCA can be used in video to relate background (low rank) to the foreground (sparse)
parts of a sequence of images. The same technique be used to relate the background to the
foreground of 3D laser range scan data. Here, a LIDAR scanner atop Stanford’s Junior
autonomous car was used to gather a 3D point cloud “video” of an intersection on the
Stanford campus. In addition to (relatively) static buildings, trees, and bushes, the data
exhibit moving shapes that correspond to pedestrians and bicyclists as they enter and exit
the scanner’s field of view. See Figure 3 for PCP applied to this data modality.

Figure 3: Frames 180 (left) and 200 (right) of LIDAR data, top view. The 200 frames,
consisting of a 2D point cloud histogram, are each 214× 173 grayscale, implying M ∈
R37022×200. Visualization of the original frame (top), the low-rank part L (middle), and
the sparse part S (bottom) for each frame has allowed the extraction of the surrounding
map (background) and the moving bicyclists and pedestrians (foreground) within ∼ 30
iterations of ADMM (∼ 1 minutes).

A major issue with 3D LIDAR data is point registration. Unlike in raster video (as in
the example of the previous section), a 3D point that appears in one frame may not appear
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in the same place during the next frame due to the construction of the 3D scanner. To get
over this difficulty, we can perform “voxel binning,” a rasterization step where we discretize
the 3D environment into voxels and associate with each voxel a count of the number of
3D points that appears within its confines. Care must be taken to select the right size for
the discretized voxels — too large, and not enough granularity is achieved for the mapping
application; too small, and binning reduces back to the 3D pixel problem, as well as increased
computational burden due to increased problem dimensions. Certain 3D applications also
allow one to compress the voxel data into two dimensions, as in Figure 3.

6 Conclusion

Robust PCA via PCP allows for a general purpose way to extract background from fore-
ground in image-like data modalities, such as video and LIDAR data. The ability to exactly
recover a low-rank and sparse approximation to a matrix by solving PCP results in a general-
purpose mapping algorithm that depends only on the problem data, and has no parameters
to tune. Even when exact recovery is not possible, PCP acts as a great heuristic.

In practice, ADMM is the method of choice to solve PCP, although accelerated proximal
gradient (“Nesterov”) methods can still be improved. A criticism of Robust PCA is that it is
not real time. One can imagine an application, however, where a robot sits at the same spot
for a minute or two, scanning its dynamic environment. At any particular instance of time,
the robot does not have access to the full map because of occlusions or shadows imposed by
moving objects. Over the lifetime of the scan, however, the robot will have seen the entire
environment. It is exactly in this regime that Robust PCA works extremely well.

In fact, under sparsity assumptions on the objects being scanned, PCP is guaranteed to
extract the background from the foreground. The background, i.e., the low-rank part of the
scan matrix, can be used as a high fidelity map of the environment, while the foreground,
i.e., the sparse part of the scan matrix, can further be processed with a classifier. In other
words, Robust PCA becomes a region of interest finder. Only those parts of the data that
correspond the region of interest appear in the foreground. This allows for automatic a
posteriori tracking and high fidelity classification of moving objects.
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