Analysis of Control Systems on Symmetric Cones

Ivan Papusha Richard M. Murray

California Institute of Technology
Control and Dynamical Systems

IEEE Conference on Decision and Control, Osaka, Japan December 17, 2015

Stability of a linear system

Is the system $\dot{x}=A x$ asymptotically stable?

$$
A=\left[\begin{array}{cccc}
-10 & 1 & 5 & 1 \\
2 & -9 & 2 & 7 \\
1 & 0 & -41 & 0 \\
4 & 1 & 3 & -9
\end{array}\right]
$$

- structurally dense
- no easy way to escape calculating eigenvalues, Lyapunov matrix...

Stability of a linear system

Is the system $\dot{x}=A x$ asymptotically stable?

$$
A=\left[\begin{array}{cccc}
-10 & 1 & 5 & 1 \\
2 & -9 & 2 & 7 \\
1 & 0 & -41 & 0 \\
4 & 1 & 3 & -9
\end{array}\right]
$$

- structurally dense
- no easy way to escape calculating eigenvalues, Lyapunov matrix... (eigenvalues: $-41.157,-4.7465,-11.548 \pm 1.4405 i$)

Stability of a linear system

Is the system $\dot{x}=A x$ asymptotically stable?

$$
A=\left[\begin{array}{cccc}
-10 & 1 & 5 & 1 \\
2 & -9 & 2 & 7 \\
1 & 0 & -41 & 0 \\
4 & 1 & 3 & -9
\end{array}\right]
$$

- structurally dense
- no easy way to escape calculating eigenvalues, Lyapunov matrix... (eigenvalues: $-41.157,-4.7465,-11.548 \pm 1.4405 i$)

can we do better?

Stability of a linear system

Is the system $\dot{x}=A x$ asymptotically stable?

$$
A=\left[\begin{array}{c|ccc}
-10 & 1 & 5 & 1 \\
2 & -9 & 2 & 7 \\
1 & 0 & -41 & 0 \\
4 & 1 & 3 & -9
\end{array}\right]
$$

- structurally dense
- no easy way to escape calculating eigenvalues, Lyapunov matrix... (eigenvalues: $-41.157,-4.7465,-11.548 \pm 1.4405 i$)

can we do better?

yes if we exploit cone structure of A

Age-old problem

question: When is the linear dynamical system

$$
\dot{x}(t)=A x(t), \quad A \in \mathbf{R}^{n \times n}, \quad x(t) \in \mathbf{R}^{n}
$$

globally asymptotically stable? $(x(t) \rightarrow 0$ as $t \rightarrow \infty$ for all initial conditions)
answer: solved!

Age-old problem

answer: The linear system is stable if and only if

1. all eigenvalues of the matrix A have negative real part,

$$
\operatorname{Re}\left(\lambda_{i}(A)\right)<0, \quad i=1, \ldots, n .
$$

Age-old problem

answer: The linear system is stable if and only if

1. all eigenvalues of the matrix A have negative real part,

$$
\operatorname{Re}\left(\lambda_{i}(A)\right)<0, \quad i=1, \ldots, n
$$

2. given a positive definite matrix $Q=Q^{T} \succ 0$, there exists a unique matrix $P \succ 0$ satisfying the Lyapunov equation

$$
A^{T} P+P A+Q=0
$$

Age-old problem

answer: The linear system is stable if and only if

1. all eigenvalues of the matrix A have negative real part,

$$
\operatorname{Re}\left(\lambda_{i}(A)\right)<0, \quad i=1, \ldots, n
$$

2. given a positive definite matrix $Q=Q^{T} \succ 0$, there exists a unique matrix $P \succ 0$ satisfying the Lyapunov equation

$$
A^{T} P+P A+Q=0
$$

3. the following linear matrix inequality holds,

$$
P=P^{T} \succ 0, \quad A^{T} P+P A \prec 0
$$

Age-old problem

answer: The linear system is stable if and only if

1. all eigenvalues of the matrix A have negative real part,

$$
\operatorname{Re}\left(\lambda_{i}(A)\right)<0, \quad i=1, \ldots, n
$$

2. given a positive definite matrix $Q=Q^{T} \succ 0$, there exists a unique matrix $P \succ 0$ satisfying the Lyapunov equation

$$
A^{T} P+P A+Q=0
$$

3. the following linear matrix inequality holds,

$$
P=P^{T} \succ 0, \quad A^{T} P+P A \prec 0
$$

4. there exists a quadratic Lyapunov function $V: \mathbf{R}^{n} \rightarrow \mathbf{R}$,

$$
V(x)=\langle x, P x\rangle
$$

which is positive definite $(V(x)>0$ for all $x \neq 0)$ and decreasing ($\dot{V}<0$ along system trajectories).

Age-old problem

answer: The linear system is stable if and only if
3. the following linear matrix inequality holds,

$$
P=P^{T} \succ 0, \quad A^{T} P+P A \prec 0 .
$$

Quadratic Lyapunov function

$$
\exists P=P^{T} \succ 0, \quad A^{T} P+P A \prec 0
$$

Lyapunov's theorem \Downarrow

$$
\dot{x}=A x \text { is stable }
$$

Quadratic Lyapunov function

$$
\exists P=P^{T} \succ 0, \quad A^{T} P+P A \prec 0
$$

Lyapunov's theorem $\Downarrow \Uparrow$ for all linear systems

$$
\dot{x}=A x \text { is stable }
$$

Three cones

A proper cone is closed, convex, pointed, has nonempty interior, and closed under nonnegative scalar multiplication.

- nonnegative orthant

$$
\mathbf{R}_{+}^{n}=\left\{x \in \mathbf{R}^{n} \mid x_{i} \geq 0, \text { for all } i=1, \ldots, n\right\}
$$

- second order (Lorentz) cone

$$
\mathcal{L}_{+}^{n}=\left\{\left(x_{0}, x_{1}\right) \in \mathbf{R} \times \mathbf{R}^{n-1} \mid\left\|x_{1}\right\|_{2} \leq x_{0}\right\}
$$

- positive semidefinite cone

$$
\mathbf{S}_{+}^{n}=\left\{X \in \mathbf{R}^{n \times n} \mid X=X^{\top} \succeq 0\right\}
$$

these cones are self-dual and symmetric (cone of squares, Jordan algebra)

Cone invariance

Definition

The system $\dot{x}=A x$ is invariant with respect to the cone K if $e^{A}(K) \subseteq K$.

- once the state enters K, it never leaves

$$
x(0) \in K \Rightarrow x(t) \in K \text { for all } t \geq 0
$$

- equivalently, A is cross-positive

$$
\begin{gathered}
x \in K, y \in K^{*}, \text { and }\langle x, y\rangle=0 \\
\Rightarrow\langle A x, y\rangle \geq 0
\end{gathered}
$$

Linear Lyapunov function

$$
\exists p \in \mathbf{R}^{n}, \quad p_{i}>0, \quad(A p)_{i}<0, \quad i=1, \ldots, n
$$

Lyapunov's theorem \Downarrow

$$
\dot{x}=A x \text { is stable }
$$

Linear Lyapunov function

$$
\exists p \in \mathbf{R}^{n}, \quad p_{i}>0, \quad(A p)_{i}<0, \quad i=1, \ldots, n
$$

Lyapunov's theorem $\Downarrow \Uparrow$ for \mathbf{R}_{+}^{n}-invariant linear systems

$$
\dot{x}=A x \text { is stable }
$$

Lorentz Lyapunov function

$$
\exists p \in \operatorname{int} \mathcal{L}_{+}^{n}, \quad A p \in-\operatorname{int} \mathcal{L}_{+}^{n}
$$

Lyapunov's theorem \Downarrow

$$
\dot{x}=A x \text { is stable }
$$

Lorentz Lyapunov function

$$
\exists p \in \operatorname{int} \mathcal{L}_{+}^{n}, \quad A p \in-\operatorname{int} \mathcal{L}_{+}^{n}
$$

Lyapunov's theorem $\Downarrow \Uparrow$ for \mathcal{L}_{+}^{n}-invariant linear systems

$$
\dot{x}=A x \text { is stable }
$$

General theorem

Let $L: V \rightarrow V$ be a linear operator on a Jordan algebra V with corresponding symmetric cone of squares K, and assume that $e^{L}(K) \subseteq K$. The following statements are equivalent:
(a) There exists $p \succ_{K} 0$ such that $-L(p) \succ_{K} 0$
(b) There exists $z \succ_{K} 0$ such that $L P_{z}+P_{z} L^{T}$ is negative definite on V.
(c) The system $\dot{x}(t)=L(x)$ with initial condition $x_{0} \in K$ is asymptotically stable.

General theorem

Let $L: V \rightarrow V$ be a linear operator on a Jordan algebra V with corresponding symmetric cone of squares K, and assume that $e^{L}(K) \subseteq K$. The following statements are equivalent:
(a) There exists $p \succ_{K} 0$ such that $-L(p) \succ_{K} 0$
(b) There exists $z \succ_{K} 0$ such that $L P_{z}+P_{z} L^{T}$ is negative definite on V.
(c) The system $\dot{x}(t)=L(x)$ with initial condition $x_{0} \in K$ is asymptotically stable.

$$
\begin{gathered}
\dot{x}=A x \text { is } K \text {-invariant } \\
\Downarrow
\end{gathered}
$$

Lyapunov function obtained by conic programming over K

Simple example

A is cross-positive (Metzler) with respect to nonnegative orthant $K=\mathbf{R}_{+}^{n}$

$$
A=\left[\begin{array}{cccc}
-10 & 1 & 5 & 1 \\
2 & -9 & 2 & 7 \\
1 & 0 & -41 & 0 \\
4 & 1 & 3 & -9
\end{array}\right]
$$

Simple example

A is cross-positive (Metzler) with respect to nonnegative orthant $K=\mathbf{R}_{+}^{n}$

$$
A=\left[\begin{array}{cccc}
-10 & 1 & 5 & 1 \\
2 & -9 & 2 & 7 \\
1 & 0 & -41 & 0 \\
4 & 1 & 3 & -9
\end{array}\right]
$$

- linear Lyapunov function $V=\langle p, x\rangle$ suffices:

$$
p=\left[\begin{array}{c}
1.4392 \\
2.7788 \\
0.22079 \\
1.9704
\end{array}\right] \succ_{\mathbf{R}_{+}^{n}} 0 \quad A p=\left[\begin{array}{c}
-8.5383 \\
-7.8967 \\
-7.6133 \\
-8.536
\end{array}\right] \prec_{\mathbf{R}_{+}^{n}} 0
$$

Simple example

A is cross-positive (Metzler) with respect to nonnegative orthant $K=\mathbf{R}_{+}^{n}$

$$
A=\left[\begin{array}{cccc}
-10 & 1 & 5 & 1 \\
2 & -9 & 2 & 7 \\
1 & 0 & -41 & 0 \\
4 & 1 & 3 & -9
\end{array}\right]
$$

- linear Lyapunov function $V=\langle p, x\rangle$ suffices:

$$
p=\left[\begin{array}{c}
1.4392 \\
2.7788 \\
0.22079 \\
1.9704
\end{array}\right] \succ_{\mathbf{R}_{+}^{n}} 0 \quad A p=\left[\begin{array}{c}
-8.5383 \\
-7.8967 \\
-7.6133 \\
-8.536
\end{array}\right] \prec_{\mathbf{R}_{+}^{n}} 0
$$

- quadratic representation: there exists $z \in \mathbf{R}_{+}^{n}$ such that $p=z \circ z$

$$
V(x)=\left\langle x, P_{z} x\right\rangle, \quad P_{z}=\operatorname{diag}\left(z^{2}\right), \quad z=\left[\begin{array}{c}
\sqrt{1.4392} \\
\sqrt{2.7788} \\
\sqrt{0.22079} \\
\sqrt{1.9704}
\end{array}\right]
$$

Transportation network example

- Directed transportation network x_{1}, \ldots, x_{4} (Rantzer, 2012), augmented with a catch-all buffer x_{0}.

$$
\left[\begin{array}{c}
\dot{x}_{0} \\
\dot{x}_{1} \\
\dot{x}_{2} \\
\dot{x}_{3} \\
\dot{x}_{4}
\end{array}\right]=\left[\begin{array}{ccccc}
\ell_{00} & \ell_{01} & \ell_{02} & \ell_{03} & \ell_{04} \\
0 & -1-\ell_{31} & \ell_{12} & 0 & 0 \\
0 & 0 & -\ell_{12}-\ell_{32} & \ell_{23} & 0 \\
0 & \ell_{31} & \ell_{32} & -\ell_{23}-\ell_{43} & \ell_{34} \\
0 & 0 & 0 & \ell_{43} & -4-\ell_{34}
\end{array}\right]\left[\begin{array}{l}
x_{0} \\
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]
$$

Transportation network example

- Directed transportation network x_{1}, \ldots, x_{4} (Rantzer, 2012), augmented with a catch-all buffer x_{0}.
- Metzler substructure

$$
\left[\begin{array}{c}
\dot{x}_{0} \\
\dot{x}_{1} \\
\dot{x}_{2} \\
\dot{x}_{3} \\
\dot{x}_{4}
\end{array}\right]=\left[\begin{array}{ccccc}
\ell_{00} & \ell_{01} & \ell_{02} & \ell_{03} & \ell_{04} \\
0 & -1-\ell_{31} & \ell_{12} & 0 & 0 \\
0 & 0 & -\ell_{12}-\ell_{32} & \ell_{23} & 0 \\
0 & \ell_{31} & \ell_{32} & -\ell_{23}-\ell_{43} & \ell_{34} \\
0 & 0 & 0 & \ell_{43} & -4-\ell_{34}
\end{array}\right]\left[\begin{array}{l}
x_{0} \\
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]
$$

Transportation network example

- Directed transportation network x_{1}, \ldots, x_{4} (Rantzer, 2012), augmented with a catch-all buffer x_{0}.
- Metzler substructure
- $\ell_{00}, \ldots, \ell_{04}$ have no definite sign

$$
\left[\begin{array}{c}
\dot{x}_{0} \\
\dot{x}_{1} \\
\dot{x}_{2} \\
\dot{x}_{3} \\
\dot{x}_{4}
\end{array}\right]=\left[\begin{array}{ccccc}
\ell_{00} & \ell_{01} & \ell_{02} & \ell_{03} & \ell_{04} \\
0 & -1-\ell_{31} & \ell_{12} & 0 & 0 \\
0 & 0 & -\ell_{12}-\ell_{32} & \ell_{23} & 0 \\
0 & \ell_{31} & \ell_{32} & -\ell_{23}-\ell_{43} & \ell_{34} \\
0 & 0 & 0 & \ell_{43} & -4-\ell_{34}
\end{array}\right]\left[\begin{array}{l}
x_{0} \\
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]
$$

Lorentz cone-invariant dynamics

Figure 1: Embedded focus along x_{0}-axis

A dynamics matrix A is \mathcal{L}_{+}^{n}-invariant if and only if there exists

$$
\begin{equation*}
\xi \in \mathbf{R}, \quad A^{\top} J_{n}+J_{n} A-\xi J_{n} \succeq 0 \tag{*}
\end{equation*}
$$

Provided this condition holds, A is (Hurwitz) stable if and only if there exists $p \succ \mathcal{L}_{+}^{n} 0$ with $A p \prec \mathcal{L}_{+}^{n} 0$.

Technical summary

Algebra:	Real	Lorentz	Symmetric		
V	\mathbf{R}^{n}	\mathbf{R}^{n}	\mathbf{S}^{n}		
K	\mathbf{R}_{+}^{n}	\mathcal{L}^{n}	\mathbf{S}_{+}^{n}		
$\langle x, y\rangle$	$x^{\top} y$	$x^{T} y$	$\operatorname{Tr}\left(X Y^{T}\right)$		
$x \circ y$	$x_{i} y_{i}$	$\left(x^{T} y, x_{0} y_{1}+y_{0} x_{1}\right)$	$\frac{1}{2}(X Y+Y X)$		
$P_{z}, z \in \operatorname{int} K$	$\operatorname{diag}(z)^{2}$	$z z^{T}-\frac{z^{T} J_{n} z J_{n}}{2}$	$X \mapsto Z X Z$		
$V(x)=\left\langle x, P_{z}(x)\right\rangle$	$x^{T} \operatorname{diag}(z)^{2} x$	$x^{T}\left(z z^{T}-\frac{\left.z^{1} j_{n} z J_{n}\right) x}{2}\right)$	$\\|X Z\\|_{F}^{2}$		
Free variables in $V(x)$	n	n	$n(n+1) / 2$		
dynamics L	$x \mapsto A x$	$x \mapsto A x$	$X \mapsto A X+X A^{T}$		
L is cross-positive	A is Metzler	A satisfies $(*)$	by construction		
$-L(p) \succ K 0$	$(A p)_{i}<0$	$\left\\|(A p)_{1}\right\\|_{2}<(-A p)_{0}$	$A P+P A^{T} \prec 0$		
Stability verification	LP	SOCP	SDP		

Table 1: Summary of dynamics preserving a cone

Questions

Is (say) \mathbf{H}_{∞} control synthesis possible via - LP?

Questions

Is (say) \mathbf{H}_{∞} control synthesis possible via

- LP? (yes, for \mathbf{R}_{+}^{n}-invariant systems, Rantzer 2012)
- SDP?

Questions

Is (say) \mathbf{H}_{∞} control synthesis possible via

- LP? (yes, for \mathbf{R}_{+}^{n}-invariant systems, Rantzer 2012)
- SDP? (yes, in general, Yakubovich 1960s...)
- SOCP?

Questions

Is (say) \mathbf{H}_{∞} control synthesis possible via

- LP? (yes, for \mathbf{R}_{+}^{n}-invariant systems, Rantzer 2012)
- SDP? (yes, in general, Yakubovich 1960s...)
- SOCP? (conjecture: yes)

Questions

Is (say) \mathbf{H}_{∞} control synthesis possible via

- LP? (yes, for \mathbf{R}_{+}^{n}-invariant systems, Rantzer 2012)
- SDP? (yes, in general, Yakubovich 1960s...)
- SOCP? (conjecture: yes)

Are these three cones the end of the story?

Questions

Is (say) \mathbf{H}_{∞} control synthesis possible via

- LP? (yes, for \mathbf{R}_{+}^{n}-invariant systems, Rantzer 2012)
- SDP? (yes, in general, Yakubovich 1960s...)
- SOCP? (conjecture: yes)

Are these three cones the end of the story?

- yes

Questions

Is (say) \mathbf{H}_{∞} control synthesis possible via

- LP? (yes, for \mathbf{R}_{+}^{n}-invariant systems, Rantzer 2012)
- SDP? (yes, in general, Yakubovich 1960s...)
- SOCP? (conjecture: yes)

Are these three cones the end of the story?

- yes (kind of)

Symmetric cone categorization

If K is a (finite dimensional) symmetric cone, then it is a cartesian product

$$
K=K_{1} \times K_{2} \times \cdots \times K_{N},
$$

where each K_{i} is one of (e.g., Faraut 1994)

- $n \times n$ self-adjoint positive semidefinite matrices with real, complex, or quaternion entries
- 3×3 self-adjoint positive semidefinite matrices with octonion entries (Albert algebra), and
- Lorentz cone

Contributions

- analysis idea comes from the cone inclusion nonnegative orthant \subseteq second-order cone \subseteq semidefinite cone

$$
\begin{gathered}
\mathrm{LP} \subseteq \mathrm{SOCP} \subseteq \mathrm{SDP} \\
\text { easy } \rightarrow \text { harder } \rightarrow \text { hardest }
\end{gathered}
$$

- characterized new class of linear systems that admit SOCP-based analysis without any loss
- unified existing analysis frameworks
- algebraic connections with a mature theory (Jordan algebras)

Thanks!

more information: Ivan Papusha, Richard M. Murray. Analysis of Control Systems on Symmetric Cones, IEEE CDC, 2015.
www.cds.caltech.edu/~ipapusha
funding: NDSEG, Powell Foundation, STARnet/TerraSwarm, Boeing

