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Stability of a linear system

Is the system ẋ = Ax asymptotically stable?

A =









− 10 1 5 1
2 − 9 2 7
1 0 − 41 0
4 1 3 − 9









• structurally dense

• no easy way to escape calculating eigenvalues, Lyapunov matrix. . .
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Stability of a linear system

Is the system ẋ = Ax asymptotically stable?

A =









− 10 1 5 1
2 − 9 2 7
1 0 − 41 0
4 1 3 − 9









• structurally dense

• no easy way to escape calculating eigenvalues, Lyapunov matrix. . .

(eigenvalues: −41.157,−4.7465,−11.548± 1.4405i)

can we do better?

yes if we exploit cone structure of A
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Age-old problem

question: When is the linear dynamical system

ẋ(t) = Ax(t), A ∈ Rn×n, x(t) ∈ Rn

globally asymptotically stable? (x(t) → 0 as t → ∞ for all initial
conditions)

answer: solved!
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Age-old problem

answer: The linear system is stable if and only if

1. all eigenvalues of the matrix A have negative real part,

Re(λi (A)) < 0, i = 1, . . . , n.
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1. all eigenvalues of the matrix A have negative real part,

Re(λi (A)) < 0, i = 1, . . . , n.

2. given a positive definite matrix Q = QT ≻ 0, there exists a unique
matrix P ≻ 0 satisfying the Lyapunov equation

ATP + PA+ Q = 0.

3. the following linear matrix inequality holds,

P = PT ≻ 0, ATP + PA ≺ 0.

4. there exists a quadratic Lyapunov function V : Rn → R,

V (x) = 〈x ,Px〉
which is positive definite (V (x) > 0 for all x 6= 0) and decreasing
(V̇ < 0 along system trajectories).
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Quadratic Lyapunov function

∃P = PT ≻ 0, ATP + PA ≺ 0

Lyapunov’s theorem ⇓
ẋ = Ax is stable

V (x)

x1 x2
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Quadratic Lyapunov function

∃P = PT ≻ 0, ATP + PA ≺ 0

Lyapunov’s theorem ⇓ ⇑ for all linear systems

ẋ = Ax is stable

V (x)

x1 x2
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Three cones

A proper cone is closed, convex, pointed, has nonempty interior, and
closed under nonnegative scalar multiplication.

• nonnegative orthant

Rn
+ = {x ∈ Rn | xi ≥ 0, for all i = 1, . . . , n}

• second order (Lorentz) cone

Ln
+ = {(x0, x1) ∈ R× Rn−1 | ‖x1‖2 ≤ x0}

• positive semidefinite cone

Sn
+ = {X ∈ Rn×n | X = XT � 0}

these cones are self-dual and symmetric (cone of squares, Jordan algebra)
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Cone invariance

Definition
The system ẋ = Ax is invariant with respect to the cone K if eA(K ) ⊆ K .

• once the state enters K , it never leaves

x(0) ∈ K ⇒ x(t) ∈ K for all t ≥ 0

• equivalently, A is cross-positive

x ∈ K , y ∈ K∗, and 〈x , y〉 = 0

⇒ 〈Ax , y〉 ≥ 0

x(t)

KK∗
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Linear Lyapunov function

∃p ∈ Rn, pi > 0, (Ap)i < 0, i = 1, . . . , n

Lyapunov’s theorem ⇓
ẋ = Ax is stable

V (x)

x1 x2
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Linear Lyapunov function

∃p ∈ Rn, pi > 0, (Ap)i < 0, i = 1, . . . , n

Lyapunov’s theorem ⇓ ⇑ for Rn
+-invariant linear systems
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Lorentz Lyapunov function

∃p ∈ intLn
+, Ap ∈ − intLn

+

Lyapunov’s theorem ⇓
ẋ = Ax is stable

V (x)

x1 x2
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Lorentz Lyapunov function

∃p ∈ intLn
+, Ap ∈ − intLn

+

Lyapunov’s theorem ⇓ ⇑ for Ln
+-invariant linear systems

ẋ = Ax is stable

V (x)

x1 x2
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General theorem

Let L : V → V be a linear operator on a Jordan algebra V with
corresponding symmetric cone of squares K , and assume that
eL(K ) ⊆ K . The following statements are equivalent:

(a) There exists p ≻K 0 such that −L(p) ≻K 0

(b) There exists z ≻K 0 such that LPz + PzL
T is negative definite on V .

(c) The system ẋ(t) = L(x) with initial condition x0 ∈ K is
asymptotically stable.
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General theorem

Let L : V → V be a linear operator on a Jordan algebra V with
corresponding symmetric cone of squares K , and assume that
eL(K ) ⊆ K . The following statements are equivalent:

(a) There exists p ≻K 0 such that −L(p) ≻K 0

(b) There exists z ≻K 0 such that LPz + PzL
T is negative definite on V .

(c) The system ẋ(t) = L(x) with initial condition x0 ∈ K is
asymptotically stable.

ẋ = Ax is K -invariant

⇓
Lyapunov function obtained by conic programming over K
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Simple example

A is cross-positive (Metzler) with respect to nonnegative orthant K = Rn
+
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−8.5383
−7.8967
−7.6133
−8.536









≺Rn
+
0

• quadratic representation: there exists z ∈ Rn
+ such that p = z ◦ z

V (x) = 〈x ,Pzx〉, Pz = diag(z2), z =









√
1.4392√
2.7788√
0.22079√
1.9704
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Transportation network example

x0

x1

x2

x3

x4

• Directed transportation network
x1, . . . , x4 (Rantzer, 2012), augmented
with a catch-all buffer x0.













ẋ0
ẋ1
ẋ2
ẋ3
ẋ4
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ℓ00 ℓ01 ℓ02 ℓ03 ℓ04
0 −1− ℓ31 ℓ12 0 0
0 0 −ℓ12 − ℓ32 ℓ23 0
0 ℓ31 ℓ32 −ℓ23 − ℓ43 ℓ34
0 0 0 ℓ43 −4− ℓ34
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Transportation network example

x0

x1

x2

x3

x4

• Directed transportation network
x1, . . . , x4 (Rantzer, 2012), augmented
with a catch-all buffer x0.

• Metzler substructure

• ℓ00, . . . , ℓ04 have no definite sign
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Lorentz cone-invariant dynamics

x0

x1 x2

x0

x1 x2

Figure 1: Embedded focus along x0-axis

A dynamics matrix A is Ln
+-invariant if and only if there exists

ξ ∈ R, AT Jn + JnA− ξJn � 0. (∗)

Provided this condition holds, A is (Hurwitz) stable if and only if there
exists p ≻Ln

+
0 with Ap ≺Ln

+
0.
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Technical summary

Algebra: Real Lorentz Symmetric
V Rn Rn Sn

K Rn
+ Ln

+ Sn
+

〈x , y〉 xT y xT y Tr(XY T )

x ◦ y xiyi (xT y , x0y1 + y0x1)
1
2
(XY + YX )

Pz , z ∈ intK diag(z)2 zzT − zT Jnz
2

Jn X 7→ ZXZ

V (x) = 〈x ,Pz (x)〉 xT diag(z)2x xT
(

zzT − zT Jnz
2

Jn

)

x ‖XZ‖2
F

Free variables in V (x) n n n(n + 1)/2
dynamics L x 7→ Ax x 7→ Ax X 7→ AX + XAT

L is cross-positive A is Metzler A satisfies (∗) by construction
−L(p) ≻K 0 (Ap)i < 0 ‖(Ap)1‖2 < (−Ap)0 AP + PAT ≺ 0

Stability verification LP SOCP SDP

Table 1: Summary of dynamics preserving a cone
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Questions

Is (say) H∞ control synthesis possible via

• LP?
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Is (say) H∞ control synthesis possible via

• LP? (yes, for Rn
+-invariant systems, Rantzer 2012)

• SDP? (yes, in general, Yakubovich 1960s. . . )

• SOCP? (conjecture: yes)

Are these three cones the end of the story?

• yes (kind of)
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Symmetric cone categorization

If K is a (finite dimensional) symmetric cone, then it is a cartesian
product

K = K1 × K2 × · · · × KN ,

where each Ki is one of (e.g., Faraut 1994)

• n × n self-adjoint positive semidefinite matrices with real, complex,
or quaternion entries

• 3× 3 self-adjoint positive semidefinite matrices with octonion entries
(Albert algebra), and

• Lorentz cone
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Contributions

• analysis idea comes from the cone inclusion

nonnegative orthant ⊆ second-order cone ⊆ semidefinite cone

LP ⊆ SOCP ⊆ SDP

easy → harder → hardest

• characterized new class of linear systems that admit SOCP-based
analysis without any loss

• unified existing analysis frameworks

• algebraic connections with a mature theory (Jordan algebras)
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Thanks!

more information: Ivan Papusha, Richard M. Murray. Analysis of
Control Systems on Symmetric Cones, IEEE CDC, 2015.

www.cds.caltech.edu/~ipapusha

funding: NDSEG, Powell Foundation, STARnet/TerraSwarm, Boeing
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