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Abstract— It is well known that exploiting special structure is ~ Finding a vectorp € R™ that satisfies this second condi-
a powerful way to extend the reach of current optimization tools  tion (3) can be formulated as an LP with fewer decision
to higher dimensions. While many linear control systems can be variables than the corresponding SDP [1], [2], [3].

treated satisfactorily with linear matrix inequalities (LMI) and . - . .
semidefinite programming (SDP), practical considerations can Systems for whichA is a Metzler matrix are callech-

still restrict scalability of general methods. Thus, we wish to ternally positive because their state stays in the nonnegative
work with high dimensional systems without explicitly forming ~ orthant R if it starts in the nonnegative orthant. As we
SDPs. To that end, we exploit a particular kind of structure  will see, the Metzler structure is (in a certain sense) tHg on
in the dynamics matrix, paving the way for a more efficient  nayra| matrix structure for which an LP may generically be

treatment of a certain class of linear systems. We show how dt . tability. H the inclusi
second order cone programming (SOCP) can be used instead composed to verify stability. However, the inclusion

of SDP to find Lyapunov functions that certify stability. This LP C SOCP C SDP
framework reduces to a famous linear program (LP) when the - -

system is internally positive, and to a semidefinite program nterpreted as an expressiveness ranking of popular conic
(SDP) when the system has no special structure. programming methods, begs the question of whether stabilit
analysis can be cast, for example, as a second order cone pro-
gram (SOCP) for some specific subclass of linear dynamics,
. This paper is concerned with stability of the linear dynamy, the same way that it can be cast as an LP for internally
ical system positive systems, and an SDP for unstructured linear sygstem
#(t) = Ax(t), Ae€R™", z(t) € R", 1) More ggnerally, we wish to know when c_:ertain _cpnic
programming techniques can be used to verify stability of
under certain conditions on the dynamics matdx When certain linear systems. In answering this question we will
this matrix has no special structure, the system is stable dfscuss a generalization of the Metzler property known
and only if there exists a symmetric matéix= P7 ¢ R"*"  as cross-positivityand the notion of alordan algebrato
satisfying the linear matrix inequalities characterize dynamics that are exponentially invariarih wi
T T respect to a symmetric cone. In so doing, we demonstrate
P=pP -0, AAP+PA<O. @) the strong unifying power of the Jordan product on linear

The existence of such a matri® corresponds to the exis- systems and discuss a rich, little-known class of systeais th
tence of a quadratic Lyapunov functidn: R — R, admit SOCP-based analysis.

I. INTRODUCTION

Il. JORDAN ALGEBRAS AND SYMMETRIC CONES

The following background is informal and meant to set out

which is positive definite {(z) > 0 for all z # 0) and notation, adopting conventions familiar to system theorgt a
decreasing(' < 0 along trajectories of (1)). optimization [4], [5], [6]. Jordan algebraic techniquesiéa

To find a matrixP that satisfies (2), one generally needs tgroved to be effective in unifying interior point methods fo
formulate and solve a semidefinite program (SDP), howevefonic programming [7]. In the context of symmetric cones,
if A has special structure, this semidefinite program caey are are rich and well studied field, with an excellent
sometimes be cast as a simpler linear program (LP)—Wwitfeference [8]. For more recent reviews, see [9], [10].
advantages in numerical stability, opportunities for para
lelism, and better scaling to high dimensions>$ 1).

V(z) = (z, Px),

A. Cones on a vector space.

For example, ifA is a given Metzler matrixi.e., its off- Let V be a vector space over the reals with inner product
diagonal entries are nonnegative, (-,). A subsetK C V is called aconeif it is closed under
nonnegative scalar multiplication: for everye K andf > 0
Ay >0, foralli#j, we havefr € K. A coneK is pointedif it contains no line,

then it suffices to search for diagonal matrix P satisfy- or equivalently

ing (2). Equivalently, condition (2) can be replaced witle th reK —zeK = z=0.

simpler vector condition . o .
A cone isproper if it is closed, convex, pointed, and has

p; >0, (A4p); <0, foralli=1,...,n. (3) nonempty interior. Every proper cone induces a partial orde

< onV given by
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We havex < y if and only if y — 2 € int K. Similarly there existsg € Aut(K) such thatgz = y. Finally, K
we writex > y andz > y to meany < z andy < x, is symmetricf it is homogeneous and self-dual. Symmetric
respectively. cones are an important object of study because they are
the cones of squares of a Jordan product, admit a spectral
decomposition, and are (in finite dimensions, [8]) isomarph

A (Euclidean) Jordan algebra is an inner product spagg a Cartesian product of
(V’.<" ) e;ntjowed with a'Jordan prpduct: VXV =V, « n x n self-adjoint positive semidefinite matrices with
which satisfies the following properties: real, complex, or quaternion entries,

1) Bilinearity: zoy is linear inz for fixed y and vice-versa | 3 » 3 self-adjoint positive semidefinite matrices with

2) Commu_tativiftya: ocy=yox octonion entries (Albert algebra), and
3) Jordan identity 22 o (y o z) = (22 o y) oz « Lorentz cone.

4) Adjoint identity (z,y o Z_> ={youz, Z> ) In this work, we pay attention to symmetric cones because
Note that a Jordan product is commutative, but it need not hgey have a differentiable log-det barrier function, ailogy
associative. When we interpret = zox, the Jordan identity merical optimization with interior point methods [7]4]L
allows any powerz*, k > 2 to be inductively defined. An The symmetric coneR" (= S}k N SL) L7, andS"

identity element satisfieseoz =zoe=uforallzcV, give rise to LP, SOCP, and SDP, respectively. We now define
and defines a number= (e, e) called therank of V. these three cones.

The cone of squaredd corresponding to the Jordan

B. Jordan algebras.

producto is defined as D. Examples of symmetric cones.
K={zoz|zeV} 1) Nonnegative orthanR’}: the cone of squares asso-
. ciated with the standard Euclidean spa@& and Jordan
Every element: € V' has a spectral decomposition
product
i=1 i.e, the entrywise (or Hadamard) product. The identity ele-
where)\; € R are eigenvalues of and the set of eigenvec- mentise =1 = (1,...,1), and the Jordan frame comprises
tors {e1,...,e,} C V, called aJordan frame satisfies the standard basis vectors. The quadratic representation o
, an element: € R"™ is given by the diagonal matri®, =
el =e;, €0 e; =0 for i # j, Zei =e. diag(2)?

=1
We havezr € K (written = > 0, or simplyz > 0 when
the context is clear) provided; > 0. Similarly, z € int K
if and only if \; > 0 (written z >x 0). The spectral ‘-
decomposition allows us to define familiar concepts like
trace, determinant, and square root of an elememy taking
the corresponding function of the eigenvalue. That is,

T r s
trx:Z)\i, detx:H)\l-, xl/Q:ZAimeh
i=1 i=1 i=1

where the last quantity only makes sense if 0.
Finally, every element € V has a quadratic representa-
tion, which is a mapP, : V' — V given by

T T2
Fig. 1. Second-order (Lorentz) cotﬂei.

2) Lorentz conel: partition every element oR" as
x = (x9,21) € R xR"~! and define the Lorentz cone (also
P.(z) =2(z0(z0x)) — 2% 0. known assecond-orderor norm cone) as

C. Symmetric cones. LY ={(zo,z1) ERxR" | [|z1]]2 <z} CR™.

The closed dual conef K is defined as This cone is illustrated in Figure 1 for the case= 3. It

K*={yeV|(zx,y) >0, forall z € K}, can be shown thaf’ is the cone of squares corresponding

. i ] to the Jordan product
A cone K is self-dualif K* = K. The automorphism group

Aut(K) of an open convex conf is the set of invertible {xo} o {yo} _ [ (z,y) ] _
linear transformationg : V' — V' that mapK to itself, x1 hn ZToY1 + Yox1

Aut(K)={g€ GL(V) | gK = K}. The rank of this algebra is 2, giving a particularly simple

) . spectral decomposition for a given element
An open coneK is homogeneoud Aut(K) acts on the

cone transitively, in other words, if for every,y € K T = Aie1 + Aqez,



where the eigenvalues and Jordan frame are « Nonnegative orthantf.(z) = Az, whereA € R"*" is
Metzler.

A= o+ [lzal2, A2 = 2o = [lzal2, « Lorentz cone:L(z) = Az, where AT J,, + J,A = £J,
611[ 1 } 621[ 1 } for some¢ € R.
2 1/ |21l 2 [—o1/[|lza]l2 « Positive semidefinite matriceg(X) = AX + X AT for
The identity element ie = (1,0) and the quadratic repre- any matrix A.
sentation of an elementc R™ is the matrix In fact, the examples above precisely characterize allseros
STT positive operators o’} and £’} (but notS?}) [13].
Pz = ZZT - B Jnv .
2 B. A class of Lyapunov functions

whereJ,, = diag(1, —1,...,—1) € R"*" is thenxn inertia Let L : V — V be a linear operator, and consider the

matrix with signature(1,n — 1). Note thatP, is a positive linear dynamical system
semidefinite matrix if and only it = 0. i

3) Positive semidefinite conB”: consider the vector #(t) = L(z), 2(0) = o, (4)
space S" of real, symmetricn x n matrices with the \yherez, € V is an initial condition. We make the as-
trace inner product. If we define the Jordan product as thgmption thateZ (K) C K, or equivalently, thatl. is cross-
symmetrized matrix product, positive. Systems that obey this this assumption are, of
course, very special, because any trajectory that stattsein

1
XoY = §(XY +YX), cone of square& will remain within K for all time ¢ > 0,

then the cone of squares &}, the positive semidefinite z0e K = z(t)eK forallt>0,
matrices with real entries. The spectral decompositionnof a N

elementX € S™ follows from the eigenvalue decompositionin other words, such systems aeponentially invariantvith
respect to the con&’. We consider a generalization of the

i=1,...,n. class of quadratic Lyapunov functions &hgiven by

Vo:V =R, Viz) = (z, P.(z)),

n

X = Z /\i’Uﬂ]iT, - e = 'Ui'UiTv
=1

The quadratic representation of an elemg&nt S™ is given

by the mapPy : S — 8" where z € V is a parameter, and®, is the quadratic

representation of in the Jordan algebr&. The following
Py(X)=2(Zo(ZoX))—(ZoZ)o X =ZXZ. theorem gives a necessary and sufficient condition ithas

IIl. A LINKTO QUADRATIC LYAPUNOV FUNCTIONS a Lyapunov function [9], [10], [14].

Instead of discussing the original dynamics (1)Rf, we Theorem 1 (Gowda et al. 2009)Let L : V' — V be a
consider linear dynamics on a Jordan algebraThis will ~ linear operator on a Jordan algebr& with corresponding
allow us to present a unified treatment of the coRés £, ~ Symmetric cone of squards, and assume that"(K) C K.
as well as restate familiar results from classical stateepaThe following statements are equivalent:

theory by specializing t&’; . (@) There exist® > 0 such that—L(p) =k 0
o (b) There existg >k 0 such thatLP, + P,LT is negative
A. Cross-positive linear operators. definite onl/
A Iinearoperato:L_ : V — V is cross-positivavith respect  (c) The systemi(t) = L(x) with initial condition zo € K
to a proper conés if is asymptotically stable.
reKye K", and(z,y) =0 = (L(z),y) >0. Proof. See [14, Theorem 11]. O

Exponentials of cross-positive operators leave the cone in This result allows the existence of a distinguished element

variant: if L : V' — V is cross-positive with respect th, p -, 0 in the interior of K, where the vector field points in

thene'l(K) C K for all t > 0. Interestingly, the converse the direction of— K, or equivalently—L(p) > 0, to certify

is also true [12, Theorem 3]. the existence of a quadratic Lyapunov function of the form
For example, a matrid € R™"*", thought of as a linear

transformationd : R — R™, is cross-positive with respect Vi V=R, Vie) = (2, Pa(2)).

to the coneR’} if and only if A is a Metzler matrixj.e,, In fact, the derivative of, along trajectories of (4) is
Aij 20, foralli#j, V.(x) = (&, P.(z)) + (x, P.())
or equivalently trajectories(t) of the system = (L(z), P:(z)) + (2, P:(L(z)))
(1) = Ax(t) = (2, LT (P.(x))) + (=, P.(L(x)))

o = (z,(P.L+L"P,
remain inR”} whenever they enteR’}. Therefore, cross- (@, ( M @)

positivity is a generalization of the Metzler property. For the algebraR™ and the corresponding conR”,
Examples of operators that satisfye” (K) C K are Theorem 1 translates as follows. The quadratic representat



of an element ~r7 0 is a diagonal matrixD with strictly  B. Diagonal dominance.
positive diagonal. LetA be a cross-positivei.é., Metzler)
matrix. The systent(t) = Axz(t) is stable (e, Hurwitz), if
and only if there exists an entrywise positive vecposuch

A square matrixA € R™" is (weakly) diagonally
dominant if its entries satisfy

that [Aii| =) |Ail, foralli=1,....n.

which happens if and only if there exists a diagonal LyaAs a simple consequence of Gershgorin’s circle theorem,

punov functionV (z) = 2 Dz, diagonally dominant matrices with nonnegative diagonal
D g0, AD+ DAT <s 0. entries are positive semidefinite.

o ) ) N ) If there exists a positive diagonal matri® € R"*"
Finding such ap is an LP for a fixedA. In addition, if sych thatAD is diagonally dominant, then the matrig
we know (or impose, through a feedback interconnectiony generalizedor scaleddiagonally dominant. Equivalently,
that A has the Metzler structure, then a diagonal Lyapunojnere exists a positive vectgr=g- 0 such that
function candidate suffices to ensure stability. This ttiels *
been used ire.g, [3] to greatly simplify (and in certain cases |Asilys > Z |Aijly;, foralli=1,...,n.
parallelize) stability analysis and controller synthesis i

Now consider the algebra™ and the corresponding cone i ) ) )
S™. One can define many cross-positive operators, but oneNote that generalized diagonally dominant matrices are
comes to mind: the Lyapunov transformatién S" — S”, also.posmve sem@eﬂmte, and mclude d|agonglly do_minan

matrices as a special case. Symmetric generalized didgonal

T
L(X)=AX+XA", dominant matrices with nonnegative diagonal entries ae al
where A € R™ is a given matrix. (By construction, known asH T-matrices, and have a very nice characterization
is cross-positive). Following the theorem, we now restatds matrices with factor width of at most two, see [17,

some widely known facts about linear systems. The matrikheorem 9].
differential equation One consequence of this characterization is thét

con T B matrices can be written as a sum of positive semidefinite
X(t) =AX + XA, X(0) = Xo ~st 0 matrices that are nonzero only on2ax 2 principal sub-

is asymptotically stable if and only if there exists a matrixmatrix, see [18]. For example, ax 3 HT-matrix A = AT

P = 0 such thatL(P) = AP + PAT < 0, if and only if is the sum of terms of the form

there exists a matri¥ > 0 such that the function 2 xs 0 w0y 0 0 0

V(X)) = (X, Pz(X)) = Te(XZX Z) = | X Z||% A=lzy 23 O/ +[0 0 0+ [0 2z 2|,

is a Lyapunov function. This happens if and onlyAfis a 000 vz 0 ys 0 2 2

(Hurwitz) stable matrix. where the sub-matrices are all positive semidefinite,
IV. DYNAMICS ON A LORENTZ COI-\IE . | R | v el 0, a =],
The coneR’} andS’} have been well studied in the liter- Ty T3 Y2 Yys| 2y 23|

ature. The “intermediate case—the codg—is, however,

quite strange. This cone has received relatively littlergton Recently, this fact has been exploited in [19], [20] to

in the control community. Recent efforts have been in thgxtend the reach of sum-of-squares techniques to high di-

context of model matching [15]. Our work here can be Seerrpensional dynamical systems without imposing full LM
as a complement constraints on the Gram matrix, and in [18] to preprocess

SDPs for numerical stability.
A. Enforcing L' -invariance
To apply the main theorem we require thét(K) ¢ k. C- Rotated quadratic constraints.
For the caseK’ = L'}, this meansA must satisfy the LMI Real, symmetric, positive semidefinite matrices of size
AT, 4+ J A=, =0, £€R. (5) 2 x 2, as they oceur in the charactenz_atlonHf*-m_atnces
. 0 ' above, are special, because they satisfy a restricted -hyper
If A were to affinely depend on optimization variables (as ibolic constraint; hence their definiteness can be enfordtd w

would if it were a closed loop matrix in a linear feedbackan SOCP rather than SDP [7]. Specifically, we have,
synthesis problem), then enforcidg -invariance would also

be an LMI—we might as well dispense with any special |*1 332] =0e=12,>0, 23>0, zy735—22>0
structure, and resort to algebraic Riccati, bounded-real, T2 T3
general LMI-based analysis,g, [16]. { 229 } -

However, if A has additional structure, for example, it T —x3]||, ~ ! 3
has an embeddgd internally positive block trgnsye_rse to Fhe = (1 + a3, 202,11 — 73) € [’:L
Lorentz cone axis, then the LMI (5) can be simplified. This
simplification can be performed with diagonal dominance. for scalarsz;, z2, andxs.

‘




V. EXAMPLES Here, the stater; represents the amount of material at

A. Embedded shearless positive block. nodei, ¢;; > 0 the transfer rate between nodeasnd; in the

We show how these techniques can be used to consia%arsbe ;ystemgo ehR the se;lf-degfradztion rate OLthed CﬁtCh'
the simple, augmenteg: + 1)-dimensional dynamics all buffer, andh; the rate o _trans er between no an the
catch-all node. Note thatl is Metzler by construction, but
[x'o] _ {ao 0} [’Io} aweR, AeR™™ the augmented system (8) need not be.
3 0 Al |z’ ’ ’ Several problems are now readily solved: by checking (6)
with trajectory z(t) = (zo(t),z1(t)) € R x R®, on the (0r (7)), with thel;; t_rea;ed as variablv_as artd= 0 fixed, _the
cone L1, After writing out the LMI (5) in block form, augmented system i&; -invariant only ifag > —1.25, which

we determine that the augmented systent1s '-invariant 1S @n upper bound on the Metzler eigenvaluedofThus the
if and only if catch-all node must consume material no faster than with

2a0] — (A + AT) = 0. (6) rate constant.25. In addition, if¢;; andh; are known, and
the augmented system (8) &, -invariant, then it is stable

It is stable if and only ifA is Hurwitz anday < 0. Roughly provideda, < 0. Of course, these types of problems can be
speaking it isﬁi“-invariant and stable if the stability degree .5t as an LP or SOCP.

of A (i.e, minus the maximum real part of the eigenvalues
of A) is at leastjag|. See Figure 3. C. Other examples o’ .

In general, the stability degree constraint (6) is an LMI in
the variableq A, ay), however, ifA is Metzler then the LMI
can be replaced with the constraint

2a0] — (A + A7) is an H " -matrix, (7

without any loss. From previous sections, the™-matrix
constraint (7) is an SOCP.

xr1 To T T2
i) L2
Fig. 3. Embedded focus along,-axis
A
1) Twist systemSupposed + AT = 0 (skew-symmetric).
The matrix system
Tq T
jfo __|ao hT i)
i?l - 0 A T ’
. is L7 -invariant if and only if |kl < ao, i.e., the point
T3 (ag,h) is in the Lorentz conel’. Note if ap = 0, the

dynamics correspond to a twist in homogeneous coordinates,
Fig. 2. Transportation network, .. . ,z4 from [3, Figure 2], augmented S€€,e.g, [21].

with a catch-all bufferz. 2) Proper orthochronous Lorentz transformation3he
restricted Lorentz grougSO™(1,n — 1) is generated by
B. Augmented transportation network. spatial rotations and Lorentz boosts, and consists of dlinea

We consider the linear transportation network shown iffansformations that keep the quadratic farf],z invari-

Figure 2, which is inspired by the one studied in [3]. Thé®t n'”_ particular, elements o§O*(1,n — 1) correspond
network might represent a base system of four buffers (solfg £ -invariant dynamics matrices, and thus fall within our

nodeszi, ..., x4) exchanging and consuming material in aramework.
way that preserves the network structure. The base system VI. CONCLUSION

is augmented with an extra catch-all buffer (grayed out node

xo), leading to the augmented dynamics In this work we analyzed linear systems with a special

. structure by Jordan algebraic techniques. In particulamput
{l‘.o} _ {ao h } [Iﬂo} . zo(t) €R, #(t) €RY, (8) analy§|s of mte_rnally positive syste_ms, which have rdgent
x 0o A been in vogue, in the same theoretical framework as systems
where the base dynamids= Az are given by the internally that are exponentially invariant with respect to the Lozent
positive system cone, as well as general linear systems. It is evident that
. 1—¢ ’ 0 0 Lyapunov functions for such systems can be significantly
1 - 8 31 ' 12 ' p 0 11 simpler, computationally and representationally, thathe
T2l ’ - 12 a2 ’ 23 ‘ ’ T21  special cone-invariant dynamic structure were not extbit
L3 81 82 - 22* 43 A 34£ T3 In this framework, summarized in Table I, the relevant
T4 43 —a — 34 [T4 i _ i ; i
structure' is cross-positivity of the dynamics matrix on a
#(b) A #(t)  Symmetric cone.

xT




Algebra: Real Lorentz Symmetric
\% R" R™ S™
K R cn sm
(z,9) aTy aly Tr(XY7T)
oy TiYi (zTy, zoy1 + yox1) XY +YX)
T
P, zeintK diag(z)? 22T — 2z g, X ZXZ
V(z) = (x, Py(x)) | 2T diag(z)?z | 2T (zzT — %Jn) x 1X2)%
Free variables iV (x) n n n(n+1)/2
dynamicsL x — Ax T Ax X = AX + XAT
L is cross-positive| A is Metzler A satisfies (5) by construction
—L(p)>x 0| (Ap)i<0 I(Ap)1ll2 < (—Ap)o AP+ PAT <0
Stability verification LP SOCP SDP
TABLE |

SUMMARY OF DYNAMICS PRESERVING A CONE

Unfortunately, while cross-positivity has a fairly simple [6]
LP characterization in terms of the corresponding dynamics’]
matrix (via the Metzler structure) for internally positive (8]
systems, the same condition is generically much more com-
plicated for £} -invariant dynamics: the condition is an LMI (9]
in the dynamics matrix. In fact, the condition correspoidin
to entrywise positivity of the dynamics matrix is also an1o]
LMI for discrete time systems [22], [23]. As a resulf] -
invariance, by itself, is not computationally attractiee high
dimensional systems without taking advantagewén more [11]
special structure. We gave a simple (almost trivial) exampl12]
of how this might be done by augmenting an internall;tls]
positive system with a catch-all block.

Future work will aim to apply these techniques to control
synthesis and as well as to further study special structurg?
An interesting question is whether it is possible to verify
stability of certain subclasses af,g, difference of positive [15]
or ellipsoidal cone invariant systems via LP or SOCP, rather
than via SDP. [16]
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