
Analysis of Control Systems on Symmetric Cones

Ivan Papusha Richard M. Murray

Abstract— It is well known that exploiting special structure is
a powerful way to extend the reach of current optimization tools
to higher dimensions. While many linear control systems can be
treated satisfactorily with linear matrix inequalities (LMI) and
semidefinite programming (SDP), practical considerations can
still restrict scalability of general methods. Thus, we wish to
work with high dimensional systems without explicitly forming
SDPs. To that end, we exploit a particular kind of structure
in the dynamics matrix, paving the way for a more efficient
treatment of a certain class of linear systems. We show how
second order cone programming (SOCP) can be used instead
of SDP to find Lyapunov functions that certify stability. This
framework reduces to a famous linear program (LP) when the
system is internally positive, and to a semidefinite program
(SDP) when the system has no special structure.

I. I NTRODUCTION

This paper is concerned with stability of the linear dynam-
ical system

ẋ(t) = Ax(t), A ∈ R
n×n, x(t) ∈ R

n, (1)

under certain conditions on the dynamics matrixA. When
this matrix has no special structure, the system is stable if
and only if there exists a symmetric matrixP = PT ∈ R

n×n

satisfying the linear matrix inequalities

P = PT ≻ 0, ATP + PA ≺ 0. (2)

The existence of such a matrixP corresponds to the exis-
tence of a quadratic Lyapunov functionV : Rn → R,

V (x) = 〈x, Px〉,

which is positive definite (V (x) > 0 for all x 6= 0) and
decreasing (̇V < 0 along trajectories of (1)).

To find a matrixP that satisfies (2), one generally needs to
formulate and solve a semidefinite program (SDP), however,
if A has special structure, this semidefinite program can
sometimes be cast as a simpler linear program (LP)—with
advantages in numerical stability, opportunities for paral-
lelism, and better scaling to high dimensions (n ≫ 1).

For example, ifA is a given Metzler matrix,i.e., its off-
diagonal entries are nonnegative,

Aij ≥ 0, for all i 6= j,

then it suffices to search for adiagonal matrix P satisfy-
ing (2). Equivalently, condition (2) can be replaced with the
simpler vector condition

pi > 0, (Ap)i < 0, for all i = 1, . . . , n. (3)
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Finding a vectorp ∈ R
n that satisfies this second condi-

tion (3) can be formulated as an LP with fewer decision
variables than the corresponding SDP [1], [2], [3].

Systems for whichA is a Metzler matrix are calledin-
ternally positive, because their state stays in the nonnegative
orthant Rn

+ if it starts in the nonnegative orthant. As we
will see, the Metzler structure is (in a certain sense) the only
natural matrix structure for which an LP may generically be
composed to verify stability. However, the inclusion

LP ⊆ SOCP ⊆ SDP

interpreted as an expressiveness ranking of popular conic
programming methods, begs the question of whether stability
analysis can be cast, for example, as a second order cone pro-
gram (SOCP) for some specific subclass of linear dynamics,
in the same way that it can be cast as an LP for internally
positive systems, and an SDP for unstructured linear systems.

More generally, we wish to know when certain conic
programming techniques can be used to verify stability of
certain linear systems. In answering this question we will
discuss a generalization of the Metzler property known
as cross-positivityand the notion of aJordan algebrato
characterize dynamics that are exponentially invariant with
respect to a symmetric cone. In so doing, we demonstrate
the strong unifying power of the Jordan product on linear
systems and discuss a rich, little-known class of systems that
admit SOCP-based analysis.

II. JORDAN ALGEBRAS AND SYMMETRIC CONES

The following background is informal and meant to set out
notation, adopting conventions familiar to system theory and
optimization [4], [5], [6]. Jordan algebraic techniques have
proved to be effective in unifying interior point methods for
conic programming [7]. In the context of symmetric cones,
they are are rich and well studied field, with an excellent
reference [8]. For more recent reviews, see [9], [10].

A. Cones on a vector space.

Let V be a vector space over the reals with inner product
〈·, ·〉. A subsetK ⊆ V is called acone if it is closed under
nonnegative scalar multiplication: for everyx ∈ K andθ ≥ 0
we haveθx ∈ K. A coneK is pointedif it contains no line,
or equivalently

x ∈ K,−x ∈ K =⇒ x = 0.

A cone is proper if it is closed, convex, pointed, and has
nonempty interior. Every proper cone induces a partial order
� on V given by

x, y ∈ V, x � y ⇐⇒ y − x ∈ K.



We havex ≺ y if and only if y − x ∈ intK. Similarly
we write x � y and x ≻ y to meany � x and y ≺ x,
respectively.

B. Jordan algebras.

A (Euclidean) Jordan algebra is an inner product space
(V, 〈·, ·〉) endowed with a Jordan product◦ : V × V → V ,
which satisfies the following properties:

1) Bilinearity: x◦y is linear inx for fixed y and vice-versa
2) Commutativity: x ◦ y = y ◦ x
3) Jordan identity: x2 ◦ (y ◦ x) = (x2 ◦ y) ◦ x
4) Adjoint identity: 〈x, y ◦ z〉 = 〈y ◦ x, z〉.

Note that a Jordan product is commutative, but it need not be
associative. When we interpretx2 = x◦x, the Jordan identity
allows any powerxk, k ≥ 2 to be inductively defined. An
identity elemente satisfiese ◦ x = x ◦ e = x for all x ∈ V ,
and defines a numberr = 〈e, e〉 called therank of V .

The cone of squaresK corresponding to the Jordan
product◦ is defined as

K = {x ◦ x | x ∈ V }.

Every elementx ∈ V has a spectral decomposition

x =
r∑

i=1

λiei,

whereλi ∈ R are eigenvalues ofx and the set of eigenvec-
tors {e1, . . . , er} ⊆ V , called aJordan frame, satisfies

e2i = ei, ei ◦ ej = 0 for i 6= j,

r∑

i=1

ei = e.

We havex ∈ K (written x �K 0, or simplyx � 0 when
the context is clear) providedλi ≥ 0. Similarly, x ∈ intK
if and only if λi > 0 (written x ≻K 0). The spectral
decomposition allows us to define familiar concepts like
trace, determinant, and square root of an elementx by taking
the corresponding function of the eigenvalue. That is,

trx =

r∑

i=1

λi, detx =

r∏

i=1

λi, x1/2 =

r∑

i=1

λ
1/2
i ei,

where the last quantity only makes sense ifx � 0.
Finally, every elementz ∈ V has a quadratic representa-

tion, which is a mapPz : V → V given by

Pz(x) = 2(z ◦ (z ◦ x))− z2 ◦ x.

C. Symmetric cones.

The closed dual coneof K is defined as

K∗ = {y ∈ V | 〈x, y〉 ≥ 0, for all x ∈ K},

A coneK is self-dualif K∗ = K. The automorphism group
Aut(K) of an open convex coneK is the set of invertible
linear transformationsg : V → V that mapK to itself,

Aut(K) = {g ∈ GL(V ) | gK = K}.

An open coneK is homogeneousif Aut(K) acts on the
cone transitively, in other words, if for everyx, y ∈ K

there existsg ∈ Aut(K) such thatgx = y. Finally, K
is symmetricif it is homogeneous and self-dual. Symmetric
cones are an important object of study because they are
the cones of squares of a Jordan product, admit a spectral
decomposition, and are (in finite dimensions, [8]) isomorphic
to a Cartesian product of

• n × n self-adjoint positive semidefinite matrices with
real, complex, or quaternion entries,

• 3 × 3 self-adjoint positive semidefinite matrices with
octonion entries (Albert algebra), and

• Lorentz cone.

In this work, we pay attention to symmetric cones because
they have a differentiable log-det barrier function, allowing
numerical optimization with interior point methods [7], [11].
The symmetric conesRn

+(= S
1
+ × · · · × S

1
+), L

n
+, andSn

+

give rise to LP, SOCP, and SDP, respectively. We now define
these three cones.

D. Examples of symmetric cones.

1) Nonnegative orthantRn
+: the cone of squares asso-

ciated with the standard Euclidean spaceR
n and Jordan

product
(x ◦ y)i = xiyi, i = 1, . . . , n,

i.e., the entrywise (or Hadamard) product. The identity ele-
ment ise = 1 = (1, . . . , 1), and the Jordan frame comprises
the standard basis vectors. The quadratic representation of
an elementz ∈ R

n is given by the diagonal matrixPz =
diag(z)2

x0

x1 x2

Fig. 1. Second-order (Lorentz) coneL3
+

.

2) Lorentz coneLn
+: partition every element ofRn as

x = (x0, x1) ∈ R×R
n−1 and define the Lorentz cone (also

known assecond-orderor norm cone) as

Ln
+ = {(x0, x1) ∈ R×R

n−1 | ‖x1‖2 ≤ x0} ⊆ R
n.

This cone is illustrated in Figure 1 for the casen = 3. It
can be shown thatLn

+ is the cone of squares corresponding
to the Jordan product

[
x0

x1

]

◦

[
y0
y1

]

=

[
〈x, y〉

x0y1 + y0x1

]

.

The rank of this algebra is 2, giving a particularly simple
spectral decomposition for a given elementx,

x = λ1e1 + λ2e2,



where the eigenvalues and Jordan frame are

λ1 = x0 + ‖x1‖2, λ2 = x0 − ‖x1‖2,

e1 =
1

2

[
1

x1/‖x1‖2

]

, e2 =
1

2

[
1

−x1/‖x1‖2

]

.

The identity element ise = (1, 0) and the quadratic repre-
sentation of an elementz ∈ R

n is the matrix

Pz = zzT −
zTJnz

2
Jn,

whereJn = diag(1,−1, . . . ,−1) ∈ R
n×n is then×n inertia

matrix with signature(1, n − 1). Note thatPz is a positive
semidefinite matrix if and only ifz �Ln

+
0.

3) Positive semidefinite coneSn
+: consider the vector

space S
n of real, symmetricn × n matrices with the

trace inner product. If we define the Jordan product as the
symmetrized matrix product,

X ◦ Y =
1

2
(XY + Y X),

then the cone of squares isSn
+, the positive semidefinite

matrices with real entries. The spectral decomposition of an
elementX ∈ S

n follows from the eigenvalue decomposition

X =

n∑

i=1

λiviv
T
i , =⇒ ei = viv

T
i , i = 1, . . . , n.

The quadratic representation of an elementZ ∈ S
n is given

by the mapPZ : Sn → S
n,

PZ(X) = 2(Z ◦ (Z ◦X))− (Z ◦ Z) ◦X = ZXZ.

III. A L INK TO QUADRATIC LYAPUNOV FUNCTIONS

Instead of discussing the original dynamics (1) onR
n, we

consider linear dynamics on a Jordan algebraV . This will
allow us to present a unified treatment of the conesR

n
+, Ln

+,
as well as restate familiar results from classical state space
theory by specializing toSn

+.

A. Cross-positive linear operators.

A linear operatorL : V → V is cross-positivewith respect
to a proper coneK if

x ∈ K, y ∈ K∗, and 〈x, y〉 = 0 =⇒ 〈L(x), y〉 ≥ 0.

Exponentials of cross-positive operators leave the cone in-
variant: if L : V → V is cross-positive with respect toK,
then etL(K) ⊆ K for all t ≥ 0. Interestingly, the converse
is also true [12, Theorem 3].

For example, a matrixA ∈ R
n×n, thought of as a linear

transformationA : Rn → R
n, is cross-positive with respect

to the coneRn
+ if and only if A is a Metzler matrix,i.e.,

Aij ≥ 0, for all i 6= j,

or equivalently trajectoriesx(t) of the system

ẋ(t) = Ax(t)

remain inR
n
+ whenever they enterRn

+. Therefore, cross-
positivity is a generalization of the Metzler property.

Examples of operatorsL that satisfyeL(K) ⊆ K are

• Nonnegative orthant:L(x) = Ax, whereA ∈ R
n×n is

Metzler.
• Lorentz cone:L(x) = Ax, whereATJn + JnA � ξJn

for someξ ∈ R.
• Positive semidefinite matrices:L(X) = AX+XAT for

any matrixA.
In fact, the examples above precisely characterize all cross-
positive operators onRn

+ andLn
+ (but notSn

+) [13].

B. A class of Lyapunov functions

Let L : V → V be a linear operator, and consider the
linear dynamical system

ẋ(t) = L(x), x(0) = x0, (4)

where x0 ∈ V is an initial condition. We make the as-
sumption thateL(K) ⊆ K, or equivalently, thatL is cross-
positive. Systems that obey this this assumption are, of
course, very special, because any trajectory that starts inthe
cone of squaresK will remain within K for all time t ≥ 0,

x0 ∈ K =⇒ x(t) ∈ K for all t ≥ 0,

in other words, such systems areexponentially invariantwith
respect to the coneK. We consider a generalization of the
class of quadratic Lyapunov functions onV given by

Vz : V → R, Vz(x) = 〈x, Pz(x)〉,

where z ∈ V is a parameter, andPz is the quadratic
representation ofz in the Jordan algebraV . The following
theorem gives a necessary and sufficient condition thatVz is
a Lyapunov function [9], [10], [14].

Theorem 1 (Gowda et al. 2009). Let L : V → V be a
linear operator on a Jordan algebraV with corresponding
symmetric cone of squaresK, and assume thateL(K) ⊆ K.
The following statements are equivalent:

(a) There existsp ≻K 0 such that−L(p) ≻K 0
(b) There existsz ≻K 0 such thatLPz + PzL

T is negative
definite onV .

(c) The systeṁx(t) = L(x) with initial condition x0 ∈ K
is asymptotically stable.

Proof. See [14, Theorem 11].

This result allows the existence of a distinguished element
p ≻K 0 in the interior ofK, where the vector field points in
the direction of−K, or equivalently−L(p) ≻K 0, to certify
the existence of a quadratic Lyapunov function of the form

Vz : V → R, Vz(x) = 〈x, Pz(x)〉.

In fact, the derivative ofVz along trajectories of (4) is

V̇z(x) = 〈ẋ, Pz(x)〉+ 〈x, Pz(ẋ)〉

= 〈L(x), Pz(x)〉+ 〈x, Pz(L(x))〉

= 〈x, LT (Pz(x))〉+ 〈x, Pz(L(x))〉

= 〈x, (PzL+ LTPz)(x)〉

For the algebraRn and the corresponding coneRn
+,

Theorem 1 translates as follows. The quadratic representation



of an elementz ≻Rn

+
0 is a diagonal matrixD with strictly

positive diagonal. LetA be a cross-positive (i.e., Metzler)
matrix. The systeṁx(t) = Ax(t) is stable (i.e., Hurwitz), if
and only if there exists an entrywise positive vectorp such
that

p ≻Rn

+
0, −Ap ≻Rn

+
0,

which happens if and only if there exists a diagonal Lya-
punov functionV (x) = xTDx,

D ≻Sn

+
0, AD +DAT ≺Sn

+
0.

Finding such ap is an LP for a fixedA. In addition, if
we know (or impose, through a feedback interconnection)
that A has the Metzler structure, then a diagonal Lyapunov
function candidate suffices to ensure stability. This trickhas
been used in,e.g., [3] to greatly simplify (and in certain cases
parallelize) stability analysis and controller synthesis.

Now consider the algebraSn and the corresponding cone
S
n
+. One can define many cross-positive operators, but one

comes to mind: the Lyapunov transformationL : Sn → S
n,

L(X) = AX +XAT ,

where A ∈ R
n is a given matrix. (By construction,L

is cross-positive). Following the theorem, we now restate
some widely known facts about linear systems. The matrix
differential equation

Ẋ(t) = AX +XAT , X(0) = X0 ≻Sn

+
0

is asymptotically stable if and only if there exists a matrix
P ≻ 0 such thatL(P ) = AP + PAT ≺ 0, if and only if
there exists a matrixZ ≻ 0 such that the function

VZ(X) = 〈X,PZ(X)〉 = Tr(XZXZ) = ‖XZ‖2F

is a Lyapunov function. This happens if and only ifA is a
(Hurwitz) stable matrix.

IV. DYNAMICS ON A LORENTZ CONE

The conesRn
+ andSn

+ have been well studied in the liter-
ature. The “intermediate case”—the coneLn

+—is, however,
quite strange. This cone has received relatively little attention
in the control community. Recent efforts have been in the
context of model matching [15]. Our work here can be seen
as a complement.

A. EnforcingLn
+-invariance

To apply the main theorem we require thateL(K) ⊆ K.
For the caseK = Ln

+, this meansA must satisfy the LMI

ATJn + JnA− ξJn � 0, ξ ∈ R. (5)

If A were to affinely depend on optimization variables (as it
would if it were a closed loop matrix in a linear feedback
synthesis problem), then enforcingLn

+-invariance would also
be an LMI—we might as well dispense with any special
structure, and resort to algebraic Riccati, bounded-real,or
general LMI-based analysis,e.g., [16].

However, if A has additional structure, for example, it
has an embedded internally positive block transverse to the
Lorentz cone axis, then the LMI (5) can be simplified. This
simplification can be performed with diagonal dominance.

B. Diagonal dominance.

A square matrixA ∈ R
n×n is (weakly) diagonally

dominant if its entries satisfy

|Aii| ≥
∑

j 6=i

|Aij |, for all i = 1, . . . , n.

As a simple consequence of Gershgorin’s circle theorem,
diagonally dominant matrices with nonnegative diagonal
entries are positive semidefinite.

If there exists a positive diagonal matrixD ∈ R
n×n

such thatAD is diagonally dominant, then the matrixA
is generalizedor scaleddiagonally dominant. Equivalently,
there exists a positive vectory ≻Rn

+
0 such that

|Aii|yi ≥
∑

j 6=i

|Aij |yj , for all i = 1, . . . , n.

Note that generalized diagonally dominant matrices are
also positive semidefinite, and include diagonally dominant
matrices as a special case. Symmetric generalized diagonally
dominant matrices with nonnegative diagonal entries are also
known asH+-matrices, and have a very nice characterization
as matrices with factor width of at most two, see [17,
Theorem 9].

One consequence of this characterization is thatH+

matrices can be written as a sum of positive semidefinite
matrices that are nonzero only on a2 × 2 principal sub-
matrix, see [18]. For example, a3× 3 H+-matrix A = AT

is the sum of terms of the form

A =





x1 x2 0
x2 x3 0
0 0 0



+





y1 0 y2
0 0 0
y2 0 y3



+





0 0 0
0 z1 z2
0 z2 z3



 ,

where the sub-matrices are all positive semidefinite,
[
x1 x2

x2 x3

]

� 0,

[
y1 y2
y2 y3

]

� 0,

[
z1 z2
z2 z3

]

� 0.

Recently, this fact has been exploited in [19], [20] to
extend the reach of sum-of-squares techniques to high di-
mensional dynamical systems without imposing full LMI
constraints on the Gram matrix, and in [18] to preprocess
SDPs for numerical stability.

C. Rotated quadratic constraints.

Real, symmetric, positive semidefinite matrices of size
2× 2, as they occur in the characterization ofH+-matrices
above, are special, because they satisfy a restricted hyper-
bolic constraint; hence their definiteness can be enforced with
an SOCP rather than SDP [7]. Specifically, we have,
[
x1 x2

x2 x3

]

� 0 ⇐⇒ x1 ≥ 0, x3 ≥ 0, x1x3 − x2
2 ≥ 0

⇐⇒

∥
∥
∥
∥

[
2x2

x1 − x3

]∥
∥
∥
∥
2

≤ x1 + x3

⇐⇒ (x1 + x3, 2x2, x1 − x3) ∈ L3
+,

for scalarsx1, x2, andx3.



V. EXAMPLES

A. Embedded shearless positive block.

We show how these techniques can be used to consider
the simple, augmented(n+ 1)-dimensional dynamics

[
ẋ0

ẋ1

]

=

[
a0 0
0 A

] [
x0

x1

]

, a0 ∈ R, A ∈ R
n×n,

with trajectory x(t) = (x0(t), x1(t)) ∈ R × R
n, on the

coneLn+1
+ . After writing out the LMI (5) in block form,

we determine that the augmented system isLn+1
+ -invariant

if and only if
2a0I − (A+AT ) � 0. (6)

It is stable if and only ifA is Hurwitz anda0 < 0. Roughly
speaking it isLn+1

+ -invariant and stable if the stability degree
of A (i.e., minus the maximum real part of the eigenvalues
of A) is at least|a0|. See Figure 3.

In general, the stability degree constraint (6) is an LMI in
the variables(A, a0), however, ifA is Metzler then the LMI
can be replaced with the constraint

2a0I − (A+AT ) is anH+-matrix, (7)

without any loss. From previous sections, theH+-matrix
constraint (7) is an SOCP.

x0

x1

x2

x3

x4

Fig. 2. Transportation networkx1, . . . , x4 from [3, Figure 2], augmented
with a catch-all bufferx0.

B. Augmented transportation network.

We consider the linear transportation network shown in
Figure 2, which is inspired by the one studied in [3]. The
network might represent a base system of four buffers (solid
nodesx1, . . . , x4) exchanging and consuming material in a
way that preserves the network structure. The base system
is augmented with an extra catch-all buffer (grayed out node
x0), leading to the augmented dynamics
[
ẋ0

˙̄x

]

=

[
a0 hT

0 A

] [
x0

x̄

]

, x0(t) ∈ R, x̄(t) ∈ R
4, (8)

where the base dynamics˙̄x = Ax̄ are given by the internally
positive system






ẋ1

ẋ2

ẋ3

ẋ4







︸ ︷︷ ︸

˙̄x(t)

=







−1− ℓ31 ℓ12 0 0
0 −ℓ12 − ℓ32 ℓ23 0
ℓ31 ℓ32 −ℓ23 − ℓ43 ℓ34
0 0 ℓ43 −4− ℓ34







︸ ︷︷ ︸

A







x1

x2

x3

x4







︸ ︷︷ ︸

x̄(t)

.

Here, the statexi represents the amount of material at
nodei, ℓij ≥ 0 the transfer rate between nodesi andj in the
base system,a0 ∈ R the self-degradation rate of the catch-
all buffer, andhi the rate of transfer between nodei and the
catch-all node. Note thatA is Metzler by construction, but
the augmented system (8) need not be.

Several problems are now readily solved: by checking (6)
(or (7)), with theℓij treated as variables andh = 0 fixed, the
augmented system isL5

+-invariant only ifa0 ≥ −1.25, which
is an upper bound on the Metzler eigenvalue ofA. Thus the
catch-all node must consume material no faster than with
rate constant1.25. In addition, if ℓij andhi are known, and
the augmented system (8) isL5

+-invariant, then it is stable
provideda0 < 0. Of course, these types of problems can be
cast as an LP or SOCP.

C. Other examples onLn
+.

x0

x1 x2

x0

x1 x2

Fig. 3. Embedded focus alongx0-axis

1) Twist system:SupposeA+AT = 0 (skew-symmetric).
The matrix system

[
ẋ0

ẋ1

]

=

[
a0 hT

0 A

] [
x0

x1

]

,

is Ln
+-invariant if and only if ‖h‖2 ≤ a0, i.e., the point

(a0, h) is in the Lorentz coneLn
+. Note if a0 = 0, the

dynamics correspond to a twist in homogeneous coordinates,
see,e.g., [21].

2) Proper orthochronous Lorentz transformations:The
restricted Lorentz groupSO+(1, n − 1) is generated by
spatial rotations and Lorentz boosts, and consists of linear
transformations that keep the quadratic formxTJnx invari-
ant. In particular, elements ofSO+(1, n − 1) correspond
to Ln

+-invariant dynamics matrices, and thus fall within our
framework.

VI. CONCLUSION

In this work we analyzed linear systems with a special
structure by Jordan algebraic techniques. In particular, we put
analysis of internally positive systems, which have recently
been in vogue, in the same theoretical framework as systems
that are exponentially invariant with respect to the Lorentz
cone, as well as general linear systems. It is evident that
Lyapunov functions for such systems can be significantly
simpler, computationally and representationally, than ifthe
special cone-invariant dynamic structure were not exploited.
In this framework, summarized in Table I, the relevant
structure is cross-positivity of the dynamics matrix on a
symmetric cone.



Algebra: Real Lorentz Symmetric
V Rn Rn Sn

K Rn
+

Ln
+

Sn
+

〈x, y〉 xT y xT y Tr(XY T )
x ◦ y xiyi (xT y, x0y1 + y0x1)

1

2
(XY + Y X)

Pz , z ∈ intK diag(z)2 zzT − z
T
Jnz

2
Jn X 7→ ZXZ

V (x) = 〈x, Pz(x)〉 xT diag(z)2x xT

(

zzT − z
T
Jnz

2
Jn

)

x ‖XZ‖2
F

Free variables inV (x) n n n(n+ 1)/2
dynamicsL x 7→ Ax x 7→ Ax X 7→ AX +XAT

L is cross-positive A is Metzler A satisfies (5) by construction
−L(p) ≻K 0 (Ap)i < 0 ‖(Ap)1‖2 < (−Ap)0 AP + PAT ≺ 0

Stability verification LP SOCP SDP

TABLE I

SUMMARY OF DYNAMICS PRESERVING A CONE

Unfortunately, while cross-positivity has a fairly simple
LP characterization in terms of the corresponding dynamics
matrix (via the Metzler structure) for internally positive
systems, the same condition is generically much more com-
plicated forLn

+-invariant dynamics: the condition is an LMI
in the dynamics matrix. In fact, the condition corresponding
to entrywise positivity of the dynamics matrix is also an
LMI for discrete time systems [22], [23]. As a result,Ln

+-
invariance, by itself, is not computationally attractive for high
dimensional systems without taking advantage ofeven more
special structure. We gave a simple (almost trivial) example
of how this might be done by augmenting an internally
positive system with a catch-all block.

Future work will aim to apply these techniques to control
synthesis and as well as to further study special structure.
An interesting question is whether it is possible to verify
stability of certain subclasses of,e.g., difference of positive
or ellipsoidal cone invariant systems via LP or SOCP, rather
than via SDP.
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[4] K. J. Åström and R. M. Murray,Feedback Systems: An Introduction
for Scientists and Engineers. Princeton University Press, 2008.

[5] S. P. Boyd and L. Vandenberghe,Convex Optimization. Cambridge
University Press, 2004.

[6] R. T. Rockafellar,Convex Analysis. Princeton University Press, 1970.
[7] F. Alizadeh and D. Goldfarb, “Second-order cone programming,”

Mathematical Programming, vol. 95, no. 1, pp. 3–51, 2003.
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