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Problem description

• Incorporating expert demonstrations into an autonomous system is difficult 

• Even when expert demonstrations are somehow incorporated, generalizing to 
unseen scenarios can be unsafe. 

• Can we generalize in a “safe” way using side information?
- what does “safe” mean?
- what kind of “side information” can be incorporated?
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Outline

1. Parameterized optimization  
 

2. Learning from expert demonstrations 
 

3. Incorporating side specifications
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Forward problem:
• f(x, p) is a convex function of x for every p
• given p, find the optimal x*
• optimality condition:

Parameterized optimization

4
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Inverse problem:
• given a demonstration data set, determine f
• data set contains allegedly optimal points 

x(k) for every parameter p(k)
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Forward optimization
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Inverse optimization
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Inverse optimization
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Imputing an objective
In general:

• assume f(x,p) is a linear combination of bases
• must determine the basis coefficients consistent with 

the optimality of every point in the data set D

7
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Typical picture

• What if the points x(k) are only approximately optimal for every parameter p(k)?
• for example, what if the “optimizer” is a human?
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Convex optimization problem:
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Discrete formulation
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Inverse optimal control

• in control: studied by Kalman (1964), Boyd (1994) and others
• in ML: sometimes called inverse reinforcement learning  

Ng & Russell (2000),  Abbeel & Ng (2004), Abbeel, Coates et al (2010)
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x(0) = x0



Ivan Papusha

`, A,B, x0

problem 
parameters

x

?(·), u?(·)
optimal trajectoriesminimize

Z 1

0
`(x, u) dt

subject to ẋ = Ax+Bu
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x(0) = x0

Forward optimal control

Inverse optimal control

• in control: studied by Kalman (1964), Boyd (1994) and others
• in ML: sometimes called inverse reinforcement learning  

Ng & Russell (2000),  Abbeel & Ng (2004), Abbeel, Coates et al (2010)

12

f(x, p)

x 2 X
p 2 P

Inverse optimal control

`, A,B, x0

problem 
parameters

x

?(·), u?(·)
optimal trajectoriesminimize

Z 1

0
`(x, u) dt

subject to ẋ = Ax+Bu
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Reward hypothesis

13

…all of what we mean by goals and purposes can be 
well thought of as the maximization [resp. minimization] 
of … a received scalar signal (called reward [stage 
cost]) (Sutton & Barto 1998)
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Learning fails when the expert is inconsistent
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Expert demonstrations:

a breakdown of the dynamic programming principle,
because the stage cost plus cost-to-go can be made
smaller by choosing x instead of x(k),

ℓ(s,α, s′) + V̂ (s′) < ℓ(s,α(k), s′
(k)

) + V̂ (s′
(k)

).

In this case, either the value function V̂ (and hence
θ) is wrong, or the “optimal” demonstration x(k) is a
mistake. The objective in (5) remains agnostic to these
alternatives by penalizing, through each term

max
x∈Xk

{

(

−r(k)cons(x, θ)
)

+

}

= max
α,s′

{

max(0, ℓ(s,α(k), s′
(k)

) + V̂θ(s
′(k))

− ℓ(s,α, s′)− V̂θ(s
′))

}

the worst-case “regret” of a policy choosing a state-
action (α, s′) at s(k) instead of (α(k), s′

(k)). Here, we
write V̂θ to make explicit the dependence of the im-
puted value function on the weights θ to be deter-
mined.

We can interpret the objective in (5) as a game be-
tween a rational expert providing (through D) optimal
state-action pairs, and a student, who tries to approxi-
mate the expert’s policy by looking at examples where
the two differ on the choice of optimal action. Wher-
ever they differ, the student tries to make the difference
in imputed cost small.

Other measures of inconsistency between the expert
and the student are possible depending on the broad
dynamics setting. For example, if the dynamics are
stochastic, we can minimize the expected regret, or
maximize the likelihood of the observed data [9].

4. VALUE OF SIDE INFORMATION

4.1 Fair comparison
Returning to our original motivation, we ask the ques-

tion: can side information, provided as temporal behavior
constraints that optimal runs of the transition system must
satisfy, be used to our advantage when attempting to re-
cover the stage cost function from expert training data? We
argue that the answer is yes. The specific value of the tem-
poral side information is in providing a task-level, instead of
a time-based, memory.
To illustrate, we compare an implementation of baseline

inverse optimal control to inverse optimal control with avail-
able temporal behavior side information.

algorithm: baseline inverse optimal control
given: TS, Θ ⊆ R

M , ℓ : S ×Act× S → R, sf ∈ S,

{φi : S → R}Mi=1, and D =
{(

(α(k), s′
(k)), s(k)

)}N

k=1

output: imputed value function V̂ (s)
begin

1. for each k = 1, . . . , N :

x(k) := (α(k), s′
(k)), p(k) := s(k),

Xk := {(α, s′) | s(k)
α

−→ s′},
define f(x, p(k)) := ℓ(s(k),α, s′) + V̂ (s′),

for all x = (α, s′) ∈ Xk

end for

2. solve convex optimization problem (5)
for an optimal weight θ⋆

3. return V̂ (s) =
∑M

i=1 θ
⋆
i φi(s)

end

Note that in the baseline algorithm, we are looking for an
optimal time-invariant strategy, ignoring any behavioral side
information; this would be expected in a classical applica-
tion of inverse optimal control or reward learning. We could
impute a general time-varying policy, however the number of
free parameters grows quickly with the number of timesteps,
and in most practical applications the time horizon is either
unknown or very large.

Next, we present the algorithm that incorporates behav-
ioral side information. Note that the differences from the
baseline are in the format of the training data, the avail-
ability of the behavioral specification automaton A, and the
“hybrid” (i.e., using the product state space S × Q) nature
of the imputed value function.

algorithm: inverse optimal control with side information
given: TS, A, Θ ⊆ R

M , ℓ : S ×Act× S → R, sf ∈ S,
{φi : S ×Q → R}Mi=1,

and D =
{(

(α(k), s′
(k)

, q′
(k)), (s(k), q(k))

)}N

k=1

output: imputed value function V̂ (s, q)
begin

1. for each k = 1, . . . , N :

x(k) := (α(k), s′
(k)

, q′
(k)), p(k) := (s(k), q(k)),

Xk := {(α, s′, q′) | s(k)
α

−→ s′, q′ ∈ δ(q(k), L(s(k)))},
define f(x, p(k)) := ℓ(s(k),α, s′) + V̂ (s′, q′),

for all x = (α, s′, q′) ∈ Xk

end for
2. solve convex optimization problem (5)

for an optimal weight θ⋆

3. return V̂ (s, q) =
∑M

i=1 θ
⋆
i φi(s, q)

end

4.2 Gridworld map
We use a 6-by-6 gridworld map for this experiment, as

shown in Figure 2. We assume that an agent placed on

Figure 2: Gridworld map and three expert demon-
strations (red: obstacles, green: goals, blue: initial
state, yellow: final state)

Learned policy:

each square has four actions (up, down, left, right), and all
transitions are deterministic. If the agent is at a border
square and tries to move towards the border (e.g., move
upwards in the top row), the agent will not move. The blue
square is the initial state s0 and the yellow square is the
final goal state sf .

Behavioral demonstrations.
The agent must start from the blue square, pass the two

green squares (in any order) while avoiding all red squares,
and eventually go to the yellow square. Once it reaches the
yellow square, the task is complete. The transition system
has 36 states, and the specification automaton has 4 states.
Thus there are a total of 144 states in the product TS ⊗A,
and at each state, there are 4 available (deterministic) ac-
tions. We show the agent 3 different expert demonstrations
that satisfy the behavioral specification.

Reward model.
We use M = 5 different features as basis functions of the

action-value function, designed as in Table 1.

v6 The optimal state value function corresponding to
the stage cost function that gives 0 only when
the goal state (yellow block with final state q4) is
reached or at the final goal state, otherwise -1.

v7 The optimal state value function corresponding to
the reward function that gives 0 only when a new
intermediate state (green block) is reached or at
the final goal state, otherwise -1.

v8 The optimal state value function corresponding to
the reward function that gives 1 only when an ob-
stacle (red block) is reached, otherwise 0.

v4 The optimal state value function corresponding to
the stage cost function that gives 0 only at transi-
tions in the demonstration, otherwise 1.

v5 The optimal state value function corresponding to
the stage cost function that gives 1 to all transi-
tions.

Table 1: Design of basis functions φi, i = 1, . . . , 5.

4.3 Simulation without side information
In this case, the feature v7 corresponds to the stage cost

function, such that any transition that goes to a green block
has loss 0, otherwise 1. Using the baseline algorithm, the
learned weight vector is

θ = (1, 0,−2290.59, 6396.68,−1),

and the learned optimal non-deterministic strategy is shown
in Figure 3. Note that following the learned strategy an
agent can miss one green block before reaching the yellow
block, or even get stuck, depending on its initial off-policy
location.

4.4 Simulation with side information
In this case, the side information is given as the DFA

shown in Figure 4. Following the side information aware
algorithm, we obtain the learned weight vector

θ = (1,−0.36,−81.22, 230.76,−0.64),

Figure 3: Learned memoryless strategy without side
information. The strategy can miss one green block
before reaching the yellow block because of a lack of
task memory.

q0start

q1

q2

q3

p1

p2

¬p1 ∧ ¬p2
p2

¬p2

p1
¬p1

true

Figure 4: Side information: a DFA constructed for
the example. The atomic proposition p1 is true
whenever the agent is in the green block near the
yellow block, and p2 is true in the other green block.

which imputes the mode-dependent strategy shown in Fig-
ure 5. The task is successfully implemented with this strat-
egy, because the DFA is able to track which green squares
have been visited in which order, and whether it is possible
to move on to the yellow square.

5. CRITIQUES AND CONCLUSIONS
In this work, we presented a general framework for impos-

ing behavioral specifications on policies learned from expert
demonstrations. We showed that temporal side informa-
tion in the form of a specification automaton can be used
to effectively constrain the number of free parameters in an
inverse optimal control problem, allowing imputed policies
to have a task memory—rather then a time-based memory,
or no memory at all. It remains to be seen whether this
framework can be put to practical use in dynamically inter-
esting applications. Although we have treated the problem
entirely using deterministic finite-state transition systems
and policies, we can envision several extensions. The most
clear extension is to consider continuous dynamics, in which
case the policy is a hybrid policy over a mixed continuous-
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start

end
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f(x, p) = `(s, s0) + V̂ (s0)

Task: get from start to end in the fewest steps, while visiting A and B in any order
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Expert demonstrations:

a breakdown of the dynamic programming principle,
because the stage cost plus cost-to-go can be made
smaller by choosing x instead of x(k),

ℓ(s,α, s′) + V̂ (s′) < ℓ(s,α(k), s′
(k)

) + V̂ (s′
(k)

).

In this case, either the value function V̂ (and hence
θ) is wrong, or the “optimal” demonstration x(k) is a
mistake. The objective in (5) remains agnostic to these
alternatives by penalizing, through each term

max
x∈Xk

{

(

−r(k)cons(x, θ)
)

+

}

= max
α,s′

{

max(0, ℓ(s,α(k), s′
(k)

) + V̂θ(s
′(k))

− ℓ(s,α, s′)− V̂θ(s
′))

}

the worst-case “regret” of a policy choosing a state-
action (α, s′) at s(k) instead of (α(k), s′

(k)). Here, we
write V̂θ to make explicit the dependence of the im-
puted value function on the weights θ to be deter-
mined.

We can interpret the objective in (5) as a game be-
tween a rational expert providing (through D) optimal
state-action pairs, and a student, who tries to approxi-
mate the expert’s policy by looking at examples where
the two differ on the choice of optimal action. Wher-
ever they differ, the student tries to make the difference
in imputed cost small.

Other measures of inconsistency between the expert
and the student are possible depending on the broad
dynamics setting. For example, if the dynamics are
stochastic, we can minimize the expected regret, or
maximize the likelihood of the observed data [9].

4. VALUE OF SIDE INFORMATION

4.1 Fair comparison
Returning to our original motivation, we ask the ques-

tion: can side information, provided as temporal behavior
constraints that optimal runs of the transition system must
satisfy, be used to our advantage when attempting to re-
cover the stage cost function from expert training data? We
argue that the answer is yes. The specific value of the tem-
poral side information is in providing a task-level, instead of
a time-based, memory.
To illustrate, we compare an implementation of baseline

inverse optimal control to inverse optimal control with avail-
able temporal behavior side information.

algorithm: baseline inverse optimal control
given: TS, Θ ⊆ R

M , ℓ : S ×Act× S → R, sf ∈ S,

{φi : S → R}Mi=1, and D =
{(

(α(k), s′
(k)), s(k)

)}N

k=1

output: imputed value function V̂ (s)
begin

1. for each k = 1, . . . , N :

x(k) := (α(k), s′
(k)), p(k) := s(k),

Xk := {(α, s′) | s(k)
α

−→ s′},
define f(x, p(k)) := ℓ(s(k),α, s′) + V̂ (s′),

for all x = (α, s′) ∈ Xk

end for

2. solve convex optimization problem (5)
for an optimal weight θ⋆

3. return V̂ (s) =
∑M

i=1 θ
⋆
i φi(s)

end

Note that in the baseline algorithm, we are looking for an
optimal time-invariant strategy, ignoring any behavioral side
information; this would be expected in a classical applica-
tion of inverse optimal control or reward learning. We could
impute a general time-varying policy, however the number of
free parameters grows quickly with the number of timesteps,
and in most practical applications the time horizon is either
unknown or very large.

Next, we present the algorithm that incorporates behav-
ioral side information. Note that the differences from the
baseline are in the format of the training data, the avail-
ability of the behavioral specification automaton A, and the
“hybrid” (i.e., using the product state space S × Q) nature
of the imputed value function.

algorithm: inverse optimal control with side information
given: TS, A, Θ ⊆ R

M , ℓ : S ×Act× S → R, sf ∈ S,
{φi : S ×Q → R}Mi=1,

and D =
{(

(α(k), s′
(k)

, q′
(k)), (s(k), q(k))

)}N

k=1

output: imputed value function V̂ (s, q)
begin

1. for each k = 1, . . . , N :

x(k) := (α(k), s′
(k)

, q′
(k)), p(k) := (s(k), q(k)),

Xk := {(α, s′, q′) | s(k)
α

−→ s′, q′ ∈ δ(q(k), L(s(k)))},
define f(x, p(k)) := ℓ(s(k),α, s′) + V̂ (s′, q′),

for all x = (α, s′, q′) ∈ Xk

end for
2. solve convex optimization problem (5)

for an optimal weight θ⋆

3. return V̂ (s, q) =
∑M

i=1 θ
⋆
i φi(s, q)

end

4.2 Gridworld map
We use a 6-by-6 gridworld map for this experiment, as

shown in Figure 2. We assume that an agent placed on

Figure 2: Gridworld map and three expert demon-
strations (red: obstacles, green: goals, blue: initial
state, yellow: final state)

Learned policy:
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Expert demonstrations:

a breakdown of the dynamic programming principle,
because the stage cost plus cost-to-go can be made
smaller by choosing x instead of x(k),

ℓ(s,α, s′) + V̂ (s′) < ℓ(s,α(k), s′
(k)

) + V̂ (s′
(k)

).

In this case, either the value function V̂ (and hence
θ) is wrong, or the “optimal” demonstration x(k) is a
mistake. The objective in (5) remains agnostic to these
alternatives by penalizing, through each term

max
x∈Xk

{

(

−r(k)cons(x, θ)
)

+

}

= max
α,s′

{

max(0, ℓ(s,α(k), s′
(k)

) + V̂θ(s
′(k))

− ℓ(s,α, s′)− V̂θ(s
′))

}

the worst-case “regret” of a policy choosing a state-
action (α, s′) at s(k) instead of (α(k), s′

(k)). Here, we
write V̂θ to make explicit the dependence of the im-
puted value function on the weights θ to be deter-
mined.

We can interpret the objective in (5) as a game be-
tween a rational expert providing (through D) optimal
state-action pairs, and a student, who tries to approxi-
mate the expert’s policy by looking at examples where
the two differ on the choice of optimal action. Wher-
ever they differ, the student tries to make the difference
in imputed cost small.

Other measures of inconsistency between the expert
and the student are possible depending on the broad
dynamics setting. For example, if the dynamics are
stochastic, we can minimize the expected regret, or
maximize the likelihood of the observed data [9].

4. VALUE OF SIDE INFORMATION

4.1 Fair comparison
Returning to our original motivation, we ask the ques-

tion: can side information, provided as temporal behavior
constraints that optimal runs of the transition system must
satisfy, be used to our advantage when attempting to re-
cover the stage cost function from expert training data? We
argue that the answer is yes. The specific value of the tem-
poral side information is in providing a task-level, instead of
a time-based, memory.
To illustrate, we compare an implementation of baseline

inverse optimal control to inverse optimal control with avail-
able temporal behavior side information.

algorithm: baseline inverse optimal control
given: TS, Θ ⊆ R

M , ℓ : S ×Act× S → R, sf ∈ S,

{φi : S → R}Mi=1, and D =
{(

(α(k), s′
(k)), s(k)

)}N

k=1

output: imputed value function V̂ (s)
begin

1. for each k = 1, . . . , N :

x(k) := (α(k), s′
(k)), p(k) := s(k),

Xk := {(α, s′) | s(k)
α

−→ s′},
define f(x, p(k)) := ℓ(s(k),α, s′) + V̂ (s′),

for all x = (α, s′) ∈ Xk

end for

2. solve convex optimization problem (5)
for an optimal weight θ⋆

3. return V̂ (s) =
∑M

i=1 θ
⋆
i φi(s)

end

Note that in the baseline algorithm, we are looking for an
optimal time-invariant strategy, ignoring any behavioral side
information; this would be expected in a classical applica-
tion of inverse optimal control or reward learning. We could
impute a general time-varying policy, however the number of
free parameters grows quickly with the number of timesteps,
and in most practical applications the time horizon is either
unknown or very large.

Next, we present the algorithm that incorporates behav-
ioral side information. Note that the differences from the
baseline are in the format of the training data, the avail-
ability of the behavioral specification automaton A, and the
“hybrid” (i.e., using the product state space S × Q) nature
of the imputed value function.

algorithm: inverse optimal control with side information
given: TS, A, Θ ⊆ R

M , ℓ : S ×Act× S → R, sf ∈ S,
{φi : S ×Q → R}Mi=1,

and D =
{(

(α(k), s′
(k)

, q′
(k)), (s(k), q(k))

)}N

k=1

output: imputed value function V̂ (s, q)
begin

1. for each k = 1, . . . , N :

x(k) := (α(k), s′
(k)

, q′
(k)), p(k) := (s(k), q(k)),

Xk := {(α, s′, q′) | s(k)
α

−→ s′, q′ ∈ δ(q(k), L(s(k)))},
define f(x, p(k)) := ℓ(s(k),α, s′) + V̂ (s′, q′),

for all x = (α, s′, q′) ∈ Xk

end for
2. solve convex optimization problem (5)

for an optimal weight θ⋆

3. return V̂ (s, q) =
∑M

i=1 θ
⋆
i φi(s, q)

end

4.2 Gridworld map
We use a 6-by-6 gridworld map for this experiment, as

shown in Figure 2. We assume that an agent placed on

Figure 2: Gridworld map and three expert demon-
strations (red: obstacles, green: goals, blue: initial
state, yellow: final state)

Learned policy:
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Expert demonstrations:

a breakdown of the dynamic programming principle,
because the stage cost plus cost-to-go can be made
smaller by choosing x instead of x(k),

ℓ(s,α, s′) + V̂ (s′) < ℓ(s,α(k), s′
(k)

) + V̂ (s′
(k)

).

In this case, either the value function V̂ (and hence
θ) is wrong, or the “optimal” demonstration x(k) is a
mistake. The objective in (5) remains agnostic to these
alternatives by penalizing, through each term

max
x∈Xk

{

(

−r(k)cons(x, θ)
)

+

}

= max
α,s′

{

max(0, ℓ(s,α(k), s′
(k)

) + V̂θ(s
′(k))

− ℓ(s,α, s′)− V̂θ(s
′))

}

the worst-case “regret” of a policy choosing a state-
action (α, s′) at s(k) instead of (α(k), s′

(k)). Here, we
write V̂θ to make explicit the dependence of the im-
puted value function on the weights θ to be deter-
mined.

We can interpret the objective in (5) as a game be-
tween a rational expert providing (through D) optimal
state-action pairs, and a student, who tries to approxi-
mate the expert’s policy by looking at examples where
the two differ on the choice of optimal action. Wher-
ever they differ, the student tries to make the difference
in imputed cost small.

Other measures of inconsistency between the expert
and the student are possible depending on the broad
dynamics setting. For example, if the dynamics are
stochastic, we can minimize the expected regret, or
maximize the likelihood of the observed data [9].

4. VALUE OF SIDE INFORMATION

4.1 Fair comparison
Returning to our original motivation, we ask the ques-

tion: can side information, provided as temporal behavior
constraints that optimal runs of the transition system must
satisfy, be used to our advantage when attempting to re-
cover the stage cost function from expert training data? We
argue that the answer is yes. The specific value of the tem-
poral side information is in providing a task-level, instead of
a time-based, memory.
To illustrate, we compare an implementation of baseline

inverse optimal control to inverse optimal control with avail-
able temporal behavior side information.

algorithm: baseline inverse optimal control
given: TS, Θ ⊆ R

M , ℓ : S ×Act× S → R, sf ∈ S,

{φi : S → R}Mi=1, and D =
{(

(α(k), s′
(k)), s(k)

)}N

k=1

output: imputed value function V̂ (s)
begin

1. for each k = 1, . . . , N :

x(k) := (α(k), s′
(k)), p(k) := s(k),

Xk := {(α, s′) | s(k)
α

−→ s′},
define f(x, p(k)) := ℓ(s(k),α, s′) + V̂ (s′),

for all x = (α, s′) ∈ Xk

end for

2. solve convex optimization problem (5)
for an optimal weight θ⋆

3. return V̂ (s) =
∑M

i=1 θ
⋆
i φi(s)

end

Note that in the baseline algorithm, we are looking for an
optimal time-invariant strategy, ignoring any behavioral side
information; this would be expected in a classical applica-
tion of inverse optimal control or reward learning. We could
impute a general time-varying policy, however the number of
free parameters grows quickly with the number of timesteps,
and in most practical applications the time horizon is either
unknown or very large.

Next, we present the algorithm that incorporates behav-
ioral side information. Note that the differences from the
baseline are in the format of the training data, the avail-
ability of the behavioral specification automaton A, and the
“hybrid” (i.e., using the product state space S × Q) nature
of the imputed value function.

algorithm: inverse optimal control with side information
given: TS, A, Θ ⊆ R

M , ℓ : S ×Act× S → R, sf ∈ S,
{φi : S ×Q → R}Mi=1,

and D =
{(

(α(k), s′
(k)

, q′
(k)), (s(k), q(k))

)}N

k=1

output: imputed value function V̂ (s, q)
begin

1. for each k = 1, . . . , N :

x(k) := (α(k), s′
(k)

, q′
(k)), p(k) := (s(k), q(k)),

Xk := {(α, s′, q′) | s(k)
α

−→ s′, q′ ∈ δ(q(k), L(s(k)))},
define f(x, p(k)) := ℓ(s(k),α, s′) + V̂ (s′, q′),

for all x = (α, s′, q′) ∈ Xk

end for
2. solve convex optimization problem (5)

for an optimal weight θ⋆

3. return V̂ (s, q) =
∑M

i=1 θ
⋆
i φi(s, q)

end

4.2 Gridworld map
We use a 6-by-6 gridworld map for this experiment, as

shown in Figure 2. We assume that an agent placed on

Figure 2: Gridworld map and three expert demon-
strations (red: obstacles, green: goals, blue: initial
state, yellow: final state)
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Task: get from start to end in the fewest steps, while visiting A and B in any order

each square has four actions (up, down, left, right), and all
transitions are deterministic. If the agent is at a border
square and tries to move towards the border (e.g., move
upwards in the top row), the agent will not move. The blue
square is the initial state s0 and the yellow square is the
final goal state sf .

Behavioral demonstrations.
The agent must start from the blue square, pass the two

green squares (in any order) while avoiding all red squares,
and eventually go to the yellow square. Once it reaches the
yellow square, the task is complete. The transition system
has 36 states, and the specification automaton has 4 states.
Thus there are a total of 144 states in the product TS ⊗A,
and at each state, there are 4 available (deterministic) ac-
tions. We show the agent 3 different expert demonstrations
that satisfy the behavioral specification.

Reward model.
We use M = 5 different features as basis functions of the

action-value function, designed as in Table 1.

v6 The optimal state value function corresponding to
the stage cost function that gives 0 only when
the goal state (yellow block with final state q4) is
reached or at the final goal state, otherwise -1.

v7 The optimal state value function corresponding to
the reward function that gives 0 only when a new
intermediate state (green block) is reached or at
the final goal state, otherwise -1.

v8 The optimal state value function corresponding to
the reward function that gives 1 only when an ob-
stacle (red block) is reached, otherwise 0.

v4 The optimal state value function corresponding to
the stage cost function that gives 0 only at transi-
tions in the demonstration, otherwise 1.

v5 The optimal state value function corresponding to
the stage cost function that gives 1 to all transi-
tions.

Table 1: Design of basis functions φi, i = 1, . . . , 5.

4.3 Simulation without side information
In this case, the feature v7 corresponds to the stage cost

function, such that any transition that goes to a green block
has loss 0, otherwise 1. Using the baseline algorithm, the
learned weight vector is

θ = (1, 0,−2290.59, 6396.68,−1),

and the learned optimal non-deterministic strategy is shown
in Figure 3. Note that following the learned strategy an
agent can miss one green block before reaching the yellow
block, or even get stuck, depending on its initial off-policy
location.

4.4 Simulation with side information
In this case, the side information is given as the DFA

shown in Figure 4. Following the side information aware
algorithm, we obtain the learned weight vector

θ = (1,−0.36,−81.22, 230.76,−0.64),

Figure 3: Learned memoryless strategy without side
information. The strategy can miss one green block
before reaching the yellow block because of a lack of
task memory.

q0start

q1

q2

q3

p1

p2

¬p1 ∧ ¬p2
p2

¬p2

p1
¬p1

true

Figure 4: Side information: a DFA constructed for
the example. The atomic proposition p1 is true
whenever the agent is in the green block near the
yellow block, and p2 is true in the other green block.

which imputes the mode-dependent strategy shown in Fig-
ure 5. The task is successfully implemented with this strat-
egy, because the DFA is able to track which green squares
have been visited in which order, and whether it is possible
to move on to the yellow square.

5. CRITIQUES AND CONCLUSIONS
In this work, we presented a general framework for impos-

ing behavioral specifications on policies learned from expert
demonstrations. We showed that temporal side informa-
tion in the form of a specification automaton can be used
to effectively constrain the number of free parameters in an
inverse optimal control problem, allowing imputed policies
to have a task memory—rather then a time-based memory,
or no memory at all. It remains to be seen whether this
framework can be put to practical use in dynamically inter-
esting applications. Although we have treated the problem
entirely using deterministic finite-state transition systems
and policies, we can envision several extensions. The most
clear extension is to consider continuous dynamics, in which
case the policy is a hybrid policy over a mixed continuous-

Side information: a specification 
automaton that every “optimal” 
trajectory must satisfy.

At each time step the atomic 
propositions p1 and p2 are evaluated

- p1 = true iff. the state is A
- p2 = true iff. the state is B

Side information automaton

A'

time
state

p1
p2

0     1     2     3     …     t     t+1
s1    s2     s3    s4     …    st    st+1
F     F     T     F             T     F
F     F     F     F             T     F

In the inverse problem, the side 
information becomes a hidden state 
with (known) evolution
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a breakdown of the dynamic programming principle,
because the stage cost plus cost-to-go can be made
smaller by choosing x instead of x(k),

ℓ(s,α, s′) + V̂ (s′) < ℓ(s,α(k), s′
(k)

) + V̂ (s′
(k)

).

In this case, either the value function V̂ (and hence
θ) is wrong, or the “optimal” demonstration x(k) is a
mistake. The objective in (5) remains agnostic to these
alternatives by penalizing, through each term

max
x∈Xk

{

(

−r(k)cons(x, θ)
)

+

}

= max
α,s′

{

max(0, ℓ(s,α(k), s′
(k)

) + V̂θ(s
′(k))

− ℓ(s,α, s′)− V̂θ(s
′))

}

the worst-case “regret” of a policy choosing a state-
action (α, s′) at s(k) instead of (α(k), s′

(k)). Here, we
write V̂θ to make explicit the dependence of the im-
puted value function on the weights θ to be deter-
mined.

We can interpret the objective in (5) as a game be-
tween a rational expert providing (through D) optimal
state-action pairs, and a student, who tries to approxi-
mate the expert’s policy by looking at examples where
the two differ on the choice of optimal action. Wher-
ever they differ, the student tries to make the difference
in imputed cost small.

Other measures of inconsistency between the expert
and the student are possible depending on the broad
dynamics setting. For example, if the dynamics are
stochastic, we can minimize the expected regret, or
maximize the likelihood of the observed data [9].

4. VALUE OF SIDE INFORMATION

4.1 Fair comparison
Returning to our original motivation, we ask the ques-

tion: can side information, provided as temporal behavior
constraints that optimal runs of the transition system must
satisfy, be used to our advantage when attempting to re-
cover the stage cost function from expert training data? We
argue that the answer is yes. The specific value of the tem-
poral side information is in providing a task-level, instead of
a time-based, memory.
To illustrate, we compare an implementation of baseline

inverse optimal control to inverse optimal control with avail-
able temporal behavior side information.

algorithm: baseline inverse optimal control
given: TS, Θ ⊆ R

M , ℓ : S ×Act× S → R, sf ∈ S,

{φi : S → R}Mi=1, and D =
{(

(α(k), s′
(k)), s(k)

)}N

k=1

output: imputed value function V̂ (s)
begin

1. for each k = 1, . . . , N :

x(k) := (α(k), s′
(k)), p(k) := s(k),

Xk := {(α, s′) | s(k)
α

−→ s′},
define f(x, p(k)) := ℓ(s(k),α, s′) + V̂ (s′),

for all x = (α, s′) ∈ Xk

end for

2. solve convex optimization problem (5)
for an optimal weight θ⋆

3. return V̂ (s) =
∑M

i=1 θ
⋆
i φi(s)

end

Note that in the baseline algorithm, we are looking for an
optimal time-invariant strategy, ignoring any behavioral side
information; this would be expected in a classical applica-
tion of inverse optimal control or reward learning. We could
impute a general time-varying policy, however the number of
free parameters grows quickly with the number of timesteps,
and in most practical applications the time horizon is either
unknown or very large.

Next, we present the algorithm that incorporates behav-
ioral side information. Note that the differences from the
baseline are in the format of the training data, the avail-
ability of the behavioral specification automaton A, and the
“hybrid” (i.e., using the product state space S × Q) nature
of the imputed value function.

algorithm: inverse optimal control with side information
given: TS, A, Θ ⊆ R

M , ℓ : S ×Act× S → R, sf ∈ S,
{φi : S ×Q → R}Mi=1,

and D =
{(

(α(k), s′
(k)

, q′
(k)), (s(k), q(k))

)}N

k=1

output: imputed value function V̂ (s, q)
begin

1. for each k = 1, . . . , N :

x(k) := (α(k), s′
(k)

, q′
(k)), p(k) := (s(k), q(k)),

Xk := {(α, s′, q′) | s(k)
α

−→ s′, q′ ∈ δ(q(k), L(s(k)))},
define f(x, p(k)) := ℓ(s(k),α, s′) + V̂ (s′, q′),

for all x = (α, s′, q′) ∈ Xk

end for
2. solve convex optimization problem (5)

for an optimal weight θ⋆

3. return V̂ (s, q) =
∑M

i=1 θ
⋆
i φi(s, q)

end

4.2 Gridworld map
We use a 6-by-6 gridworld map for this experiment, as

shown in Figure 2. We assume that an agent placed on

Figure 2: Gridworld map and three expert demon-
strations (red: obstacles, green: goals, blue: initial
state, yellow: final state)

start

end

B

A

(a) q = q0 (b) q = q1

(c) q = q2 (d) q = q3

Figure 5: Learned strategy with side information

(dynamics) discrete- (behavior automaton) space [16]. By
choosing to present discrete transition system dynamics, we
have sidestepped the important technicalities of hybrid sys-
tems. Our choice in this respect was deliberate—it allowed
us to study the value of temporal side information without
technical distractions. Another clear direction is to rewrite
the the dynamics as a Markov decision process, and allow
for randomized (instead of deterministic) imputed policies.
With this modeling choice, we can perhaps better interpret
inconsistent demonstrations in Bayesian or maximum likeli-
hood frameworks, e.g., [9].
Key challenges still remain both in scalability and practi-

cality. We showed a fairly small gridworld example; however
it is well known that automaton size grows at least exponen-
tially with the size of a regular expression or temporal logic
formula that defines it. Furthermore, since the specification
automaton must be deterministic, another exponential fac-
tor must be added to determinize useful specifications. We
invite the reader to imagine the size of a gridworld spec-
ification automaton encoding the side information that a
traveling salesman problem must be solved. Thus while it
may be beneficial to use a task-level encoding in some cases,
we might still be forced to look for a memoryless or time-
parameterized strategy in others.
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each square has four actions (up, down, left, right), and all
transitions are deterministic. If the agent is at a border
square and tries to move towards the border (e.g., move
upwards in the top row), the agent will not move. The blue
square is the initial state s0 and the yellow square is the
final goal state sf .

Behavioral demonstrations.
The agent must start from the blue square, pass the two

green squares (in any order) while avoiding all red squares,
and eventually go to the yellow square. Once it reaches the
yellow square, the task is complete. The transition system
has 36 states, and the specification automaton has 4 states.
Thus there are a total of 144 states in the product TS ⊗A,
and at each state, there are 4 available (deterministic) ac-
tions. We show the agent 3 different expert demonstrations
that satisfy the behavioral specification.

Reward model.
We use M = 5 different features as basis functions of the

action-value function, designed as in Table 1.

v6 The optimal state value function corresponding to
the stage cost function that gives 0 only when
the goal state (yellow block with final state q4) is
reached or at the final goal state, otherwise -1.

v7 The optimal state value function corresponding to
the reward function that gives 0 only when a new
intermediate state (green block) is reached or at
the final goal state, otherwise -1.

v8 The optimal state value function corresponding to
the reward function that gives 1 only when an ob-
stacle (red block) is reached, otherwise 0.

v4 The optimal state value function corresponding to
the stage cost function that gives 0 only at transi-
tions in the demonstration, otherwise 1.

v5 The optimal state value function corresponding to
the stage cost function that gives 1 to all transi-
tions.

Table 1: Design of basis functions φi, i = 1, . . . , 5.

4.3 Simulation without side information
In this case, the feature v7 corresponds to the stage cost

function, such that any transition that goes to a green block
has loss 0, otherwise 1. Using the baseline algorithm, the
learned weight vector is

θ = (1, 0,−2290.59, 6396.68,−1),

and the learned optimal non-deterministic strategy is shown
in Figure 3. Note that following the learned strategy an
agent can miss one green block before reaching the yellow
block, or even get stuck, depending on its initial off-policy
location.

4.4 Simulation with side information
In this case, the side information is given as the DFA

shown in Figure 4. Following the side information aware
algorithm, we obtain the learned weight vector

θ = (1,−0.36,−81.22, 230.76,−0.64),

Figure 3: Learned memoryless strategy without side
information. The strategy can miss one green block
before reaching the yellow block because of a lack of
task memory.

q0start

q1

q2

q3

p1

p2

¬p1 ∧ ¬p2
p2

¬p2

p1
¬p1

true

Figure 4: Side information: a DFA constructed for
the example. The atomic proposition p1 is true
whenever the agent is in the green block near the
yellow block, and p2 is true in the other green block.

which imputes the mode-dependent strategy shown in Fig-
ure 5. The task is successfully implemented with this strat-
egy, because the DFA is able to track which green squares
have been visited in which order, and whether it is possible
to move on to the yellow square.

5. CRITIQUES AND CONCLUSIONS
In this work, we presented a general framework for impos-

ing behavioral specifications on policies learned from expert
demonstrations. We showed that temporal side informa-
tion in the form of a specification automaton can be used
to effectively constrain the number of free parameters in an
inverse optimal control problem, allowing imputed policies
to have a task memory—rather then a time-based memory,
or no memory at all. It remains to be seen whether this
framework can be put to practical use in dynamically inter-
esting applications. Although we have treated the problem
entirely using deterministic finite-state transition systems
and policies, we can envision several extensions. The most
clear extension is to consider continuous dynamics, in which
case the policy is a hybrid policy over a mixed continuous-

A'
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Expert demonstrations:

a breakdown of the dynamic programming principle,
because the stage cost plus cost-to-go can be made
smaller by choosing x instead of x(k),

ℓ(s,α, s′) + V̂ (s′) < ℓ(s,α(k), s′
(k)

) + V̂ (s′
(k)

).

In this case, either the value function V̂ (and hence
θ) is wrong, or the “optimal” demonstration x(k) is a
mistake. The objective in (5) remains agnostic to these
alternatives by penalizing, through each term

max
x∈Xk

{

(

−r(k)cons(x, θ)
)

+

}

= max
α,s′

{

max(0, ℓ(s,α(k), s′
(k)

) + V̂θ(s
′(k))

− ℓ(s,α, s′)− V̂θ(s
′))

}

the worst-case “regret” of a policy choosing a state-
action (α, s′) at s(k) instead of (α(k), s′

(k)). Here, we
write V̂θ to make explicit the dependence of the im-
puted value function on the weights θ to be deter-
mined.

We can interpret the objective in (5) as a game be-
tween a rational expert providing (through D) optimal
state-action pairs, and a student, who tries to approxi-
mate the expert’s policy by looking at examples where
the two differ on the choice of optimal action. Wher-
ever they differ, the student tries to make the difference
in imputed cost small.

Other measures of inconsistency between the expert
and the student are possible depending on the broad
dynamics setting. For example, if the dynamics are
stochastic, we can minimize the expected regret, or
maximize the likelihood of the observed data [9].

4. VALUE OF SIDE INFORMATION

4.1 Fair comparison
Returning to our original motivation, we ask the ques-

tion: can side information, provided as temporal behavior
constraints that optimal runs of the transition system must
satisfy, be used to our advantage when attempting to re-
cover the stage cost function from expert training data? We
argue that the answer is yes. The specific value of the tem-
poral side information is in providing a task-level, instead of
a time-based, memory.
To illustrate, we compare an implementation of baseline

inverse optimal control to inverse optimal control with avail-
able temporal behavior side information.

algorithm: baseline inverse optimal control
given: TS, Θ ⊆ R

M , ℓ : S ×Act× S → R, sf ∈ S,

{φi : S → R}Mi=1, and D =
{(

(α(k), s′
(k)), s(k)

)}N

k=1

output: imputed value function V̂ (s)
begin

1. for each k = 1, . . . , N :

x(k) := (α(k), s′
(k)), p(k) := s(k),

Xk := {(α, s′) | s(k)
α

−→ s′},
define f(x, p(k)) := ℓ(s(k),α, s′) + V̂ (s′),

for all x = (α, s′) ∈ Xk

end for

2. solve convex optimization problem (5)
for an optimal weight θ⋆

3. return V̂ (s) =
∑M

i=1 θ
⋆
i φi(s)

end

Note that in the baseline algorithm, we are looking for an
optimal time-invariant strategy, ignoring any behavioral side
information; this would be expected in a classical applica-
tion of inverse optimal control or reward learning. We could
impute a general time-varying policy, however the number of
free parameters grows quickly with the number of timesteps,
and in most practical applications the time horizon is either
unknown or very large.

Next, we present the algorithm that incorporates behav-
ioral side information. Note that the differences from the
baseline are in the format of the training data, the avail-
ability of the behavioral specification automaton A, and the
“hybrid” (i.e., using the product state space S × Q) nature
of the imputed value function.

algorithm: inverse optimal control with side information
given: TS, A, Θ ⊆ R

M , ℓ : S ×Act× S → R, sf ∈ S,
{φi : S ×Q → R}Mi=1,

and D =
{(

(α(k), s′
(k)

, q′
(k)), (s(k), q(k))

)}N

k=1

output: imputed value function V̂ (s, q)
begin

1. for each k = 1, . . . , N :

x(k) := (α(k), s′
(k)

, q′
(k)), p(k) := (s(k), q(k)),

Xk := {(α, s′, q′) | s(k)
α

−→ s′, q′ ∈ δ(q(k), L(s(k)))},
define f(x, p(k)) := ℓ(s(k),α, s′) + V̂ (s′, q′),

for all x = (α, s′, q′) ∈ Xk

end for
2. solve convex optimization problem (5)

for an optimal weight θ⋆

3. return V̂ (s, q) =
∑M

i=1 θ
⋆
i φi(s, q)

end

4.2 Gridworld map
We use a 6-by-6 gridworld map for this experiment, as

shown in Figure 2. We assume that an agent placed on

Figure 2: Gridworld map and three expert demon-
strations (red: obstacles, green: goals, blue: initial
state, yellow: final state)

start

end

B

A

(a) q = q0 (b) q = q1

(c) q = q2 (d) q = q3

each square has four actions (up, down, left, right), and all
transitions are deterministic. If the agent is at a border
square and tries to move towards the border (e.g., move
upwards in the top row), the agent will not move. The blue
square is the initial state s0 and the yellow square is the
final goal state sf .

Behavioral demonstrations.
The agent must start from the blue square, pass the two

green squares (in any order) while avoiding all red squares,
and eventually go to the yellow square. Once it reaches the
yellow square, the task is complete. The transition system
has 36 states, and the specification automaton has 4 states.
Thus there are a total of 144 states in the product TS ⊗A,
and at each state, there are 4 available (deterministic) ac-
tions. We show the agent 3 different expert demonstrations
that satisfy the behavioral specification.

Reward model.
We use M = 5 different features as basis functions of the

action-value function, designed as in Table 1.

v6 The optimal state value function corresponding to
the stage cost function that gives 0 only when
the goal state (yellow block with final state q4) is
reached or at the final goal state, otherwise -1.

v7 The optimal state value function corresponding to
the reward function that gives 0 only when a new
intermediate state (green block) is reached or at
the final goal state, otherwise -1.

v8 The optimal state value function corresponding to
the reward function that gives 1 only when an ob-
stacle (red block) is reached, otherwise 0.

v4 The optimal state value function corresponding to
the stage cost function that gives 0 only at transi-
tions in the demonstration, otherwise 1.

v5 The optimal state value function corresponding to
the stage cost function that gives 1 to all transi-
tions.

Table 1: Design of basis functions φi, i = 1, . . . , 5.

4.3 Simulation without side information
In this case, the feature v7 corresponds to the stage cost

function, such that any transition that goes to a green block
has loss 0, otherwise 1. Using the baseline algorithm, the
learned weight vector is

θ = (1, 0,−2290.59, 6396.68,−1),

and the learned optimal non-deterministic strategy is shown
in Figure 3. Note that following the learned strategy an
agent can miss one green block before reaching the yellow
block, or even get stuck, depending on its initial off-policy
location.

4.4 Simulation with side information
In this case, the side information is given as the DFA

shown in Figure 4. Following the side information aware
algorithm, we obtain the learned weight vector

θ = (1,−0.36,−81.22, 230.76,−0.64),

Figure 3: Learned memoryless strategy without side
information. The strategy can miss one green block
before reaching the yellow block because of a lack of
task memory.
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Figure 4: Side information: a DFA constructed for
the example. The atomic proposition p1 is true
whenever the agent is in the green block near the
yellow block, and p2 is true in the other green block.

which imputes the mode-dependent strategy shown in Fig-
ure 5. The task is successfully implemented with this strat-
egy, because the DFA is able to track which green squares
have been visited in which order, and whether it is possible
to move on to the yellow square.

5. CRITIQUES AND CONCLUSIONS
In this work, we presented a general framework for impos-

ing behavioral specifications on policies learned from expert
demonstrations. We showed that temporal side informa-
tion in the form of a specification automaton can be used
to effectively constrain the number of free parameters in an
inverse optimal control problem, allowing imputed policies
to have a task memory—rather then a time-based memory,
or no memory at all. It remains to be seen whether this
framework can be put to practical use in dynamically inter-
esting applications. Although we have treated the problem
entirely using deterministic finite-state transition systems
and policies, we can envision several extensions. The most
clear extension is to consider continuous dynamics, in which
case the policy is a hybrid policy over a mixed continuous-
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a breakdown of the dynamic programming principle,
because the stage cost plus cost-to-go can be made
smaller by choosing x instead of x(k),

ℓ(s,α, s′) + V̂ (s′) < ℓ(s,α(k), s′
(k)

) + V̂ (s′
(k)

).

In this case, either the value function V̂ (and hence
θ) is wrong, or the “optimal” demonstration x(k) is a
mistake. The objective in (5) remains agnostic to these
alternatives by penalizing, through each term

max
x∈Xk

{

(

−r(k)cons(x, θ)
)

+

}

= max
α,s′

{

max(0, ℓ(s,α(k), s′
(k)

) + V̂θ(s
′(k))

− ℓ(s,α, s′)− V̂θ(s
′))

}

the worst-case “regret” of a policy choosing a state-
action (α, s′) at s(k) instead of (α(k), s′

(k)). Here, we
write V̂θ to make explicit the dependence of the im-
puted value function on the weights θ to be deter-
mined.

We can interpret the objective in (5) as a game be-
tween a rational expert providing (through D) optimal
state-action pairs, and a student, who tries to approxi-
mate the expert’s policy by looking at examples where
the two differ on the choice of optimal action. Wher-
ever they differ, the student tries to make the difference
in imputed cost small.

Other measures of inconsistency between the expert
and the student are possible depending on the broad
dynamics setting. For example, if the dynamics are
stochastic, we can minimize the expected regret, or
maximize the likelihood of the observed data [9].

4. VALUE OF SIDE INFORMATION

4.1 Fair comparison
Returning to our original motivation, we ask the ques-

tion: can side information, provided as temporal behavior
constraints that optimal runs of the transition system must
satisfy, be used to our advantage when attempting to re-
cover the stage cost function from expert training data? We
argue that the answer is yes. The specific value of the tem-
poral side information is in providing a task-level, instead of
a time-based, memory.
To illustrate, we compare an implementation of baseline

inverse optimal control to inverse optimal control with avail-
able temporal behavior side information.

algorithm: baseline inverse optimal control
given: TS, Θ ⊆ R

M , ℓ : S ×Act× S → R, sf ∈ S,

{φi : S → R}Mi=1, and D =
{(

(α(k), s′
(k)), s(k)

)}N

k=1

output: imputed value function V̂ (s)
begin

1. for each k = 1, . . . , N :

x(k) := (α(k), s′
(k)), p(k) := s(k),

Xk := {(α, s′) | s(k)
α

−→ s′},
define f(x, p(k)) := ℓ(s(k),α, s′) + V̂ (s′),

for all x = (α, s′) ∈ Xk

end for

2. solve convex optimization problem (5)
for an optimal weight θ⋆

3. return V̂ (s) =
∑M

i=1 θ
⋆
i φi(s)

end

Note that in the baseline algorithm, we are looking for an
optimal time-invariant strategy, ignoring any behavioral side
information; this would be expected in a classical applica-
tion of inverse optimal control or reward learning. We could
impute a general time-varying policy, however the number of
free parameters grows quickly with the number of timesteps,
and in most practical applications the time horizon is either
unknown or very large.

Next, we present the algorithm that incorporates behav-
ioral side information. Note that the differences from the
baseline are in the format of the training data, the avail-
ability of the behavioral specification automaton A, and the
“hybrid” (i.e., using the product state space S × Q) nature
of the imputed value function.

algorithm: inverse optimal control with side information
given: TS, A, Θ ⊆ R

M , ℓ : S ×Act× S → R, sf ∈ S,
{φi : S ×Q → R}Mi=1,

and D =
{(

(α(k), s′
(k)

, q′
(k)), (s(k), q(k))

)}N

k=1

output: imputed value function V̂ (s, q)
begin

1. for each k = 1, . . . , N :

x(k) := (α(k), s′
(k)

, q′
(k)), p(k) := (s(k), q(k)),

Xk := {(α, s′, q′) | s(k)
α

−→ s′, q′ ∈ δ(q(k), L(s(k)))},
define f(x, p(k)) := ℓ(s(k),α, s′) + V̂ (s′, q′),

for all x = (α, s′, q′) ∈ Xk

end for
2. solve convex optimization problem (5)

for an optimal weight θ⋆

3. return V̂ (s, q) =
∑M

i=1 θ
⋆
i φi(s, q)

end

4.2 Gridworld map
We use a 6-by-6 gridworld map for this experiment, as

shown in Figure 2. We assume that an agent placed on

Figure 2: Gridworld map and three expert demon-
strations (red: obstacles, green: goals, blue: initial
state, yellow: final state)
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each square has four actions (up, down, left, right), and all
transitions are deterministic. If the agent is at a border
square and tries to move towards the border (e.g., move
upwards in the top row), the agent will not move. The blue
square is the initial state s0 and the yellow square is the
final goal state sf .

Behavioral demonstrations.
The agent must start from the blue square, pass the two

green squares (in any order) while avoiding all red squares,
and eventually go to the yellow square. Once it reaches the
yellow square, the task is complete. The transition system
has 36 states, and the specification automaton has 4 states.
Thus there are a total of 144 states in the product TS ⊗A,
and at each state, there are 4 available (deterministic) ac-
tions. We show the agent 3 different expert demonstrations
that satisfy the behavioral specification.

Reward model.
We use M = 5 different features as basis functions of the

action-value function, designed as in Table 1.

v6 The optimal state value function corresponding to
the stage cost function that gives 0 only when
the goal state (yellow block with final state q4) is
reached or at the final goal state, otherwise -1.

v7 The optimal state value function corresponding to
the reward function that gives 0 only when a new
intermediate state (green block) is reached or at
the final goal state, otherwise -1.

v8 The optimal state value function corresponding to
the reward function that gives 1 only when an ob-
stacle (red block) is reached, otherwise 0.

v4 The optimal state value function corresponding to
the stage cost function that gives 0 only at transi-
tions in the demonstration, otherwise 1.

v5 The optimal state value function corresponding to
the stage cost function that gives 1 to all transi-
tions.

Table 1: Design of basis functions φi, i = 1, . . . , 5.

4.3 Simulation without side information
In this case, the feature v7 corresponds to the stage cost

function, such that any transition that goes to a green block
has loss 0, otherwise 1. Using the baseline algorithm, the
learned weight vector is

θ = (1, 0,−2290.59, 6396.68,−1),

and the learned optimal non-deterministic strategy is shown
in Figure 3. Note that following the learned strategy an
agent can miss one green block before reaching the yellow
block, or even get stuck, depending on its initial off-policy
location.

4.4 Simulation with side information
In this case, the side information is given as the DFA

shown in Figure 4. Following the side information aware
algorithm, we obtain the learned weight vector

θ = (1,−0.36,−81.22, 230.76,−0.64),

Figure 3: Learned memoryless strategy without side
information. The strategy can miss one green block
before reaching the yellow block because of a lack of
task memory.
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Figure 4: Side information: a DFA constructed for
the example. The atomic proposition p1 is true
whenever the agent is in the green block near the
yellow block, and p2 is true in the other green block.

which imputes the mode-dependent strategy shown in Fig-
ure 5. The task is successfully implemented with this strat-
egy, because the DFA is able to track which green squares
have been visited in which order, and whether it is possible
to move on to the yellow square.

5. CRITIQUES AND CONCLUSIONS
In this work, we presented a general framework for impos-

ing behavioral specifications on policies learned from expert
demonstrations. We showed that temporal side informa-
tion in the form of a specification automaton can be used
to effectively constrain the number of free parameters in an
inverse optimal control problem, allowing imputed policies
to have a task memory—rather then a time-based memory,
or no memory at all. It remains to be seen whether this
framework can be put to practical use in dynamically inter-
esting applications. Although we have treated the problem
entirely using deterministic finite-state transition systems
and policies, we can envision several extensions. The most
clear extension is to consider continuous dynamics, in which
case the policy is a hybrid policy over a mixed continuous-
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a breakdown of the dynamic programming principle,
because the stage cost plus cost-to-go can be made
smaller by choosing x instead of x(k),

ℓ(s,α, s′) + V̂ (s′) < ℓ(s,α(k), s′
(k)

) + V̂ (s′
(k)

).

In this case, either the value function V̂ (and hence
θ) is wrong, or the “optimal” demonstration x(k) is a
mistake. The objective in (5) remains agnostic to these
alternatives by penalizing, through each term

max
x∈Xk

{

(

−r(k)cons(x, θ)
)

+

}

= max
α,s′

{

max(0, ℓ(s,α(k), s′
(k)

) + V̂θ(s
′(k))

− ℓ(s,α, s′)− V̂θ(s
′))

}

the worst-case “regret” of a policy choosing a state-
action (α, s′) at s(k) instead of (α(k), s′

(k)). Here, we
write V̂θ to make explicit the dependence of the im-
puted value function on the weights θ to be deter-
mined.

We can interpret the objective in (5) as a game be-
tween a rational expert providing (through D) optimal
state-action pairs, and a student, who tries to approxi-
mate the expert’s policy by looking at examples where
the two differ on the choice of optimal action. Wher-
ever they differ, the student tries to make the difference
in imputed cost small.

Other measures of inconsistency between the expert
and the student are possible depending on the broad
dynamics setting. For example, if the dynamics are
stochastic, we can minimize the expected regret, or
maximize the likelihood of the observed data [9].

4. VALUE OF SIDE INFORMATION

4.1 Fair comparison
Returning to our original motivation, we ask the ques-

tion: can side information, provided as temporal behavior
constraints that optimal runs of the transition system must
satisfy, be used to our advantage when attempting to re-
cover the stage cost function from expert training data? We
argue that the answer is yes. The specific value of the tem-
poral side information is in providing a task-level, instead of
a time-based, memory.
To illustrate, we compare an implementation of baseline

inverse optimal control to inverse optimal control with avail-
able temporal behavior side information.

algorithm: baseline inverse optimal control
given: TS, Θ ⊆ R

M , ℓ : S ×Act× S → R, sf ∈ S,

{φi : S → R}Mi=1, and D =
{(

(α(k), s′
(k)), s(k)

)}N

k=1

output: imputed value function V̂ (s)
begin

1. for each k = 1, . . . , N :

x(k) := (α(k), s′
(k)), p(k) := s(k),

Xk := {(α, s′) | s(k)
α

−→ s′},
define f(x, p(k)) := ℓ(s(k),α, s′) + V̂ (s′),

for all x = (α, s′) ∈ Xk

end for

2. solve convex optimization problem (5)
for an optimal weight θ⋆

3. return V̂ (s) =
∑M

i=1 θ
⋆
i φi(s)

end

Note that in the baseline algorithm, we are looking for an
optimal time-invariant strategy, ignoring any behavioral side
information; this would be expected in a classical applica-
tion of inverse optimal control or reward learning. We could
impute a general time-varying policy, however the number of
free parameters grows quickly with the number of timesteps,
and in most practical applications the time horizon is either
unknown or very large.

Next, we present the algorithm that incorporates behav-
ioral side information. Note that the differences from the
baseline are in the format of the training data, the avail-
ability of the behavioral specification automaton A, and the
“hybrid” (i.e., using the product state space S × Q) nature
of the imputed value function.

algorithm: inverse optimal control with side information
given: TS, A, Θ ⊆ R

M , ℓ : S ×Act× S → R, sf ∈ S,
{φi : S ×Q → R}Mi=1,

and D =
{(

(α(k), s′
(k)

, q′
(k)), (s(k), q(k))

)}N

k=1

output: imputed value function V̂ (s, q)
begin

1. for each k = 1, . . . , N :

x(k) := (α(k), s′
(k)

, q′
(k)), p(k) := (s(k), q(k)),

Xk := {(α, s′, q′) | s(k)
α

−→ s′, q′ ∈ δ(q(k), L(s(k)))},
define f(x, p(k)) := ℓ(s(k),α, s′) + V̂ (s′, q′),

for all x = (α, s′, q′) ∈ Xk

end for
2. solve convex optimization problem (5)

for an optimal weight θ⋆

3. return V̂ (s, q) =
∑M

i=1 θ
⋆
i φi(s, q)

end

4.2 Gridworld map
We use a 6-by-6 gridworld map for this experiment, as

shown in Figure 2. We assume that an agent placed on

Figure 2: Gridworld map and three expert demon-
strations (red: obstacles, green: goals, blue: initial
state, yellow: final state)
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each square has four actions (up, down, left, right), and all
transitions are deterministic. If the agent is at a border
square and tries to move towards the border (e.g., move
upwards in the top row), the agent will not move. The blue
square is the initial state s0 and the yellow square is the
final goal state sf .

Behavioral demonstrations.
The agent must start from the blue square, pass the two

green squares (in any order) while avoiding all red squares,
and eventually go to the yellow square. Once it reaches the
yellow square, the task is complete. The transition system
has 36 states, and the specification automaton has 4 states.
Thus there are a total of 144 states in the product TS ⊗A,
and at each state, there are 4 available (deterministic) ac-
tions. We show the agent 3 different expert demonstrations
that satisfy the behavioral specification.

Reward model.
We use M = 5 different features as basis functions of the

action-value function, designed as in Table 1.

v6 The optimal state value function corresponding to
the stage cost function that gives 0 only when
the goal state (yellow block with final state q4) is
reached or at the final goal state, otherwise -1.

v7 The optimal state value function corresponding to
the reward function that gives 0 only when a new
intermediate state (green block) is reached or at
the final goal state, otherwise -1.

v8 The optimal state value function corresponding to
the reward function that gives 1 only when an ob-
stacle (red block) is reached, otherwise 0.

v4 The optimal state value function corresponding to
the stage cost function that gives 0 only at transi-
tions in the demonstration, otherwise 1.

v5 The optimal state value function corresponding to
the stage cost function that gives 1 to all transi-
tions.

Table 1: Design of basis functions φi, i = 1, . . . , 5.

4.3 Simulation without side information
In this case, the feature v7 corresponds to the stage cost

function, such that any transition that goes to a green block
has loss 0, otherwise 1. Using the baseline algorithm, the
learned weight vector is

θ = (1, 0,−2290.59, 6396.68,−1),

and the learned optimal non-deterministic strategy is shown
in Figure 3. Note that following the learned strategy an
agent can miss one green block before reaching the yellow
block, or even get stuck, depending on its initial off-policy
location.

4.4 Simulation with side information
In this case, the side information is given as the DFA

shown in Figure 4. Following the side information aware
algorithm, we obtain the learned weight vector

θ = (1,−0.36,−81.22, 230.76,−0.64),

Figure 3: Learned memoryless strategy without side
information. The strategy can miss one green block
before reaching the yellow block because of a lack of
task memory.
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Figure 4: Side information: a DFA constructed for
the example. The atomic proposition p1 is true
whenever the agent is in the green block near the
yellow block, and p2 is true in the other green block.

which imputes the mode-dependent strategy shown in Fig-
ure 5. The task is successfully implemented with this strat-
egy, because the DFA is able to track which green squares
have been visited in which order, and whether it is possible
to move on to the yellow square.

5. CRITIQUES AND CONCLUSIONS
In this work, we presented a general framework for impos-

ing behavioral specifications on policies learned from expert
demonstrations. We showed that temporal side informa-
tion in the form of a specification automaton can be used
to effectively constrain the number of free parameters in an
inverse optimal control problem, allowing imputed policies
to have a task memory—rather then a time-based memory,
or no memory at all. It remains to be seen whether this
framework can be put to practical use in dynamically inter-
esting applications. Although we have treated the problem
entirely using deterministic finite-state transition systems
and policies, we can envision several extensions. The most
clear extension is to consider continuous dynamics, in which
case the policy is a hybrid policy over a mixed continuous-
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a breakdown of the dynamic programming principle,
because the stage cost plus cost-to-go can be made
smaller by choosing x instead of x(k),

ℓ(s,α, s′) + V̂ (s′) < ℓ(s,α(k), s′
(k)

) + V̂ (s′
(k)

).

In this case, either the value function V̂ (and hence
θ) is wrong, or the “optimal” demonstration x(k) is a
mistake. The objective in (5) remains agnostic to these
alternatives by penalizing, through each term

max
x∈Xk

{

(

−r(k)cons(x, θ)
)

+

}

= max
α,s′

{

max(0, ℓ(s,α(k), s′
(k)

) + V̂θ(s
′(k))

− ℓ(s,α, s′)− V̂θ(s
′))

}

the worst-case “regret” of a policy choosing a state-
action (α, s′) at s(k) instead of (α(k), s′

(k)). Here, we
write V̂θ to make explicit the dependence of the im-
puted value function on the weights θ to be deter-
mined.

We can interpret the objective in (5) as a game be-
tween a rational expert providing (through D) optimal
state-action pairs, and a student, who tries to approxi-
mate the expert’s policy by looking at examples where
the two differ on the choice of optimal action. Wher-
ever they differ, the student tries to make the difference
in imputed cost small.

Other measures of inconsistency between the expert
and the student are possible depending on the broad
dynamics setting. For example, if the dynamics are
stochastic, we can minimize the expected regret, or
maximize the likelihood of the observed data [9].

4. VALUE OF SIDE INFORMATION

4.1 Fair comparison
Returning to our original motivation, we ask the ques-

tion: can side information, provided as temporal behavior
constraints that optimal runs of the transition system must
satisfy, be used to our advantage when attempting to re-
cover the stage cost function from expert training data? We
argue that the answer is yes. The specific value of the tem-
poral side information is in providing a task-level, instead of
a time-based, memory.
To illustrate, we compare an implementation of baseline

inverse optimal control to inverse optimal control with avail-
able temporal behavior side information.

algorithm: baseline inverse optimal control
given: TS, Θ ⊆ R

M , ℓ : S ×Act× S → R, sf ∈ S,

{φi : S → R}Mi=1, and D =
{(

(α(k), s′
(k)), s(k)

)}N

k=1

output: imputed value function V̂ (s)
begin

1. for each k = 1, . . . , N :

x(k) := (α(k), s′
(k)), p(k) := s(k),

Xk := {(α, s′) | s(k)
α

−→ s′},
define f(x, p(k)) := ℓ(s(k),α, s′) + V̂ (s′),

for all x = (α, s′) ∈ Xk

end for

2. solve convex optimization problem (5)
for an optimal weight θ⋆

3. return V̂ (s) =
∑M

i=1 θ
⋆
i φi(s)

end

Note that in the baseline algorithm, we are looking for an
optimal time-invariant strategy, ignoring any behavioral side
information; this would be expected in a classical applica-
tion of inverse optimal control or reward learning. We could
impute a general time-varying policy, however the number of
free parameters grows quickly with the number of timesteps,
and in most practical applications the time horizon is either
unknown or very large.

Next, we present the algorithm that incorporates behav-
ioral side information. Note that the differences from the
baseline are in the format of the training data, the avail-
ability of the behavioral specification automaton A, and the
“hybrid” (i.e., using the product state space S × Q) nature
of the imputed value function.

algorithm: inverse optimal control with side information
given: TS, A, Θ ⊆ R

M , ℓ : S ×Act× S → R, sf ∈ S,
{φi : S ×Q → R}Mi=1,

and D =
{(

(α(k), s′
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)}N

k=1
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define f(x, p(k)) := ℓ(s(k),α, s′) + V̂ (s′, q′),

for all x = (α, s′, q′) ∈ Xk

end for
2. solve convex optimization problem (5)

for an optimal weight θ⋆

3. return V̂ (s, q) =
∑M

i=1 θ
⋆
i φi(s, q)

end

4.2 Gridworld map
We use a 6-by-6 gridworld map for this experiment, as

shown in Figure 2. We assume that an agent placed on
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square and tries to move towards the border (e.g., move
upwards in the top row), the agent will not move. The blue
square is the initial state s0 and the yellow square is the
final goal state sf .

Behavioral demonstrations.
The agent must start from the blue square, pass the two

green squares (in any order) while avoiding all red squares,
and eventually go to the yellow square. Once it reaches the
yellow square, the task is complete. The transition system
has 36 states, and the specification automaton has 4 states.
Thus there are a total of 144 states in the product TS ⊗A,
and at each state, there are 4 available (deterministic) ac-
tions. We show the agent 3 different expert demonstrations
that satisfy the behavioral specification.

Reward model.
We use M = 5 different features as basis functions of the

action-value function, designed as in Table 1.

v6 The optimal state value function corresponding to
the stage cost function that gives 0 only when
the goal state (yellow block with final state q4) is
reached or at the final goal state, otherwise -1.

v7 The optimal state value function corresponding to
the reward function that gives 0 only when a new
intermediate state (green block) is reached or at
the final goal state, otherwise -1.

v8 The optimal state value function corresponding to
the reward function that gives 1 only when an ob-
stacle (red block) is reached, otherwise 0.

v4 The optimal state value function corresponding to
the stage cost function that gives 0 only at transi-
tions in the demonstration, otherwise 1.

v5 The optimal state value function corresponding to
the stage cost function that gives 1 to all transi-
tions.

Table 1: Design of basis functions φi, i = 1, . . . , 5.

4.3 Simulation without side information
In this case, the feature v7 corresponds to the stage cost

function, such that any transition that goes to a green block
has loss 0, otherwise 1. Using the baseline algorithm, the
learned weight vector is

θ = (1, 0,−2290.59, 6396.68,−1),

and the learned optimal non-deterministic strategy is shown
in Figure 3. Note that following the learned strategy an
agent can miss one green block before reaching the yellow
block, or even get stuck, depending on its initial off-policy
location.

4.4 Simulation with side information
In this case, the side information is given as the DFA

shown in Figure 4. Following the side information aware
algorithm, we obtain the learned weight vector

θ = (1,−0.36,−81.22, 230.76,−0.64),

Figure 3: Learned memoryless strategy without side
information. The strategy can miss one green block
before reaching the yellow block because of a lack of
task memory.
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Figure 4: Side information: a DFA constructed for
the example. The atomic proposition p1 is true
whenever the agent is in the green block near the
yellow block, and p2 is true in the other green block.

which imputes the mode-dependent strategy shown in Fig-
ure 5. The task is successfully implemented with this strat-
egy, because the DFA is able to track which green squares
have been visited in which order, and whether it is possible
to move on to the yellow square.

5. CRITIQUES AND CONCLUSIONS
In this work, we presented a general framework for impos-

ing behavioral specifications on policies learned from expert
demonstrations. We showed that temporal side informa-
tion in the form of a specification automaton can be used
to effectively constrain the number of free parameters in an
inverse optimal control problem, allowing imputed policies
to have a task memory—rather then a time-based memory,
or no memory at all. It remains to be seen whether this
framework can be put to practical use in dynamically inter-
esting applications. Although we have treated the problem
entirely using deterministic finite-state transition systems
and policies, we can envision several extensions. The most
clear extension is to consider continuous dynamics, in which
case the policy is a hybrid policy over a mixed continuous-

A'

Side information:

Learned policy:



Ivan Papusha

Side information-aware policy has memory

18

Expert demonstrations:

a breakdown of the dynamic programming principle,
because the stage cost plus cost-to-go can be made
smaller by choosing x instead of x(k),

ℓ(s,α, s′) + V̂ (s′) < ℓ(s,α(k), s′
(k)

) + V̂ (s′
(k)

).

In this case, either the value function V̂ (and hence
θ) is wrong, or the “optimal” demonstration x(k) is a
mistake. The objective in (5) remains agnostic to these
alternatives by penalizing, through each term

max
x∈Xk

{

(

−r(k)cons(x, θ)
)

+

}

= max
α,s′

{

max(0, ℓ(s,α(k), s′
(k)

) + V̂θ(s
′(k))

− ℓ(s,α, s′)− V̂θ(s
′))

}

the worst-case “regret” of a policy choosing a state-
action (α, s′) at s(k) instead of (α(k), s′

(k)). Here, we
write V̂θ to make explicit the dependence of the im-
puted value function on the weights θ to be deter-
mined.

We can interpret the objective in (5) as a game be-
tween a rational expert providing (through D) optimal
state-action pairs, and a student, who tries to approxi-
mate the expert’s policy by looking at examples where
the two differ on the choice of optimal action. Wher-
ever they differ, the student tries to make the difference
in imputed cost small.

Other measures of inconsistency between the expert
and the student are possible depending on the broad
dynamics setting. For example, if the dynamics are
stochastic, we can minimize the expected regret, or
maximize the likelihood of the observed data [9].

4. VALUE OF SIDE INFORMATION

4.1 Fair comparison
Returning to our original motivation, we ask the ques-

tion: can side information, provided as temporal behavior
constraints that optimal runs of the transition system must
satisfy, be used to our advantage when attempting to re-
cover the stage cost function from expert training data? We
argue that the answer is yes. The specific value of the tem-
poral side information is in providing a task-level, instead of
a time-based, memory.
To illustrate, we compare an implementation of baseline

inverse optimal control to inverse optimal control with avail-
able temporal behavior side information.

algorithm: baseline inverse optimal control
given: TS, Θ ⊆ R

M , ℓ : S ×Act× S → R, sf ∈ S,

{φi : S → R}Mi=1, and D =
{(

(α(k), s′
(k)), s(k)

)}N

k=1

output: imputed value function V̂ (s)
begin

1. for each k = 1, . . . , N :

x(k) := (α(k), s′
(k)), p(k) := s(k),

Xk := {(α, s′) | s(k)
α

−→ s′},
define f(x, p(k)) := ℓ(s(k),α, s′) + V̂ (s′),

for all x = (α, s′) ∈ Xk

end for

2. solve convex optimization problem (5)
for an optimal weight θ⋆

3. return V̂ (s) =
∑M

i=1 θ
⋆
i φi(s)

end

Note that in the baseline algorithm, we are looking for an
optimal time-invariant strategy, ignoring any behavioral side
information; this would be expected in a classical applica-
tion of inverse optimal control or reward learning. We could
impute a general time-varying policy, however the number of
free parameters grows quickly with the number of timesteps,
and in most practical applications the time horizon is either
unknown or very large.

Next, we present the algorithm that incorporates behav-
ioral side information. Note that the differences from the
baseline are in the format of the training data, the avail-
ability of the behavioral specification automaton A, and the
“hybrid” (i.e., using the product state space S × Q) nature
of the imputed value function.

algorithm: inverse optimal control with side information
given: TS, A, Θ ⊆ R

M , ℓ : S ×Act× S → R, sf ∈ S,
{φi : S ×Q → R}Mi=1,

and D =
{(

(α(k), s′
(k)

, q′
(k)), (s(k), q(k))

)}N

k=1

output: imputed value function V̂ (s, q)
begin

1. for each k = 1, . . . , N :

x(k) := (α(k), s′
(k)

, q′
(k)), p(k) := (s(k), q(k)),

Xk := {(α, s′, q′) | s(k)
α

−→ s′, q′ ∈ δ(q(k), L(s(k)))},
define f(x, p(k)) := ℓ(s(k),α, s′) + V̂ (s′, q′),

for all x = (α, s′, q′) ∈ Xk

end for
2. solve convex optimization problem (5)

for an optimal weight θ⋆

3. return V̂ (s, q) =
∑M

i=1 θ
⋆
i φi(s, q)

end

4.2 Gridworld map
We use a 6-by-6 gridworld map for this experiment, as

shown in Figure 2. We assume that an agent placed on

Figure 2: Gridworld map and three expert demon-
strations (red: obstacles, green: goals, blue: initial
state, yellow: final state)

start

end
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(c) q = q2 (d) q = q3

each square has four actions (up, down, left, right), and all
transitions are deterministic. If the agent is at a border
square and tries to move towards the border (e.g., move
upwards in the top row), the agent will not move. The blue
square is the initial state s0 and the yellow square is the
final goal state sf .

Behavioral demonstrations.
The agent must start from the blue square, pass the two

green squares (in any order) while avoiding all red squares,
and eventually go to the yellow square. Once it reaches the
yellow square, the task is complete. The transition system
has 36 states, and the specification automaton has 4 states.
Thus there are a total of 144 states in the product TS ⊗A,
and at each state, there are 4 available (deterministic) ac-
tions. We show the agent 3 different expert demonstrations
that satisfy the behavioral specification.

Reward model.
We use M = 5 different features as basis functions of the

action-value function, designed as in Table 1.

v6 The optimal state value function corresponding to
the stage cost function that gives 0 only when
the goal state (yellow block with final state q4) is
reached or at the final goal state, otherwise -1.

v7 The optimal state value function corresponding to
the reward function that gives 0 only when a new
intermediate state (green block) is reached or at
the final goal state, otherwise -1.

v8 The optimal state value function corresponding to
the reward function that gives 1 only when an ob-
stacle (red block) is reached, otherwise 0.

v4 The optimal state value function corresponding to
the stage cost function that gives 0 only at transi-
tions in the demonstration, otherwise 1.

v5 The optimal state value function corresponding to
the stage cost function that gives 1 to all transi-
tions.

Table 1: Design of basis functions φi, i = 1, . . . , 5.

4.3 Simulation without side information
In this case, the feature v7 corresponds to the stage cost

function, such that any transition that goes to a green block
has loss 0, otherwise 1. Using the baseline algorithm, the
learned weight vector is

θ = (1, 0,−2290.59, 6396.68,−1),

and the learned optimal non-deterministic strategy is shown
in Figure 3. Note that following the learned strategy an
agent can miss one green block before reaching the yellow
block, or even get stuck, depending on its initial off-policy
location.

4.4 Simulation with side information
In this case, the side information is given as the DFA

shown in Figure 4. Following the side information aware
algorithm, we obtain the learned weight vector

θ = (1,−0.36,−81.22, 230.76,−0.64),

Figure 3: Learned memoryless strategy without side
information. The strategy can miss one green block
before reaching the yellow block because of a lack of
task memory.
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Figure 4: Side information: a DFA constructed for
the example. The atomic proposition p1 is true
whenever the agent is in the green block near the
yellow block, and p2 is true in the other green block.

which imputes the mode-dependent strategy shown in Fig-
ure 5. The task is successfully implemented with this strat-
egy, because the DFA is able to track which green squares
have been visited in which order, and whether it is possible
to move on to the yellow square.

5. CRITIQUES AND CONCLUSIONS
In this work, we presented a general framework for impos-

ing behavioral specifications on policies learned from expert
demonstrations. We showed that temporal side informa-
tion in the form of a specification automaton can be used
to effectively constrain the number of free parameters in an
inverse optimal control problem, allowing imputed policies
to have a task memory—rather then a time-based memory,
or no memory at all. It remains to be seen whether this
framework can be put to practical use in dynamically inter-
esting applications. Although we have treated the problem
entirely using deterministic finite-state transition systems
and policies, we can envision several extensions. The most
clear extension is to consider continuous dynamics, in which
case the policy is a hybrid policy over a mixed continuous-
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smaller by choosing x instead of x(k),

ℓ(s,α, s′) + V̂ (s′) < ℓ(s,α(k), s′
(k)
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).

In this case, either the value function V̂ (and hence
θ) is wrong, or the “optimal” demonstration x(k) is a
mistake. The objective in (5) remains agnostic to these
alternatives by penalizing, through each term

max
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the worst-case “regret” of a policy choosing a state-
action (α, s′) at s(k) instead of (α(k), s′

(k)). Here, we
write V̂θ to make explicit the dependence of the im-
puted value function on the weights θ to be deter-
mined.

We can interpret the objective in (5) as a game be-
tween a rational expert providing (through D) optimal
state-action pairs, and a student, who tries to approxi-
mate the expert’s policy by looking at examples where
the two differ on the choice of optimal action. Wher-
ever they differ, the student tries to make the difference
in imputed cost small.

Other measures of inconsistency between the expert
and the student are possible depending on the broad
dynamics setting. For example, if the dynamics are
stochastic, we can minimize the expected regret, or
maximize the likelihood of the observed data [9].

4. VALUE OF SIDE INFORMATION

4.1 Fair comparison
Returning to our original motivation, we ask the ques-

tion: can side information, provided as temporal behavior
constraints that optimal runs of the transition system must
satisfy, be used to our advantage when attempting to re-
cover the stage cost function from expert training data? We
argue that the answer is yes. The specific value of the tem-
poral side information is in providing a task-level, instead of
a time-based, memory.
To illustrate, we compare an implementation of baseline

inverse optimal control to inverse optimal control with avail-
able temporal behavior side information.

algorithm: baseline inverse optimal control
given: TS, Θ ⊆ R

M , ℓ : S ×Act× S → R, sf ∈ S,

{φi : S → R}Mi=1, and D =
{(

(α(k), s′
(k)), s(k)

)}N

k=1

output: imputed value function V̂ (s)
begin

1. for each k = 1, . . . , N :

x(k) := (α(k), s′
(k)), p(k) := s(k),

Xk := {(α, s′) | s(k)
α

−→ s′},
define f(x, p(k)) := ℓ(s(k),α, s′) + V̂ (s′),

for all x = (α, s′) ∈ Xk

end for

2. solve convex optimization problem (5)
for an optimal weight θ⋆

3. return V̂ (s) =
∑M

i=1 θ
⋆
i φi(s)

end

Note that in the baseline algorithm, we are looking for an
optimal time-invariant strategy, ignoring any behavioral side
information; this would be expected in a classical applica-
tion of inverse optimal control or reward learning. We could
impute a general time-varying policy, however the number of
free parameters grows quickly with the number of timesteps,
and in most practical applications the time horizon is either
unknown or very large.

Next, we present the algorithm that incorporates behav-
ioral side information. Note that the differences from the
baseline are in the format of the training data, the avail-
ability of the behavioral specification automaton A, and the
“hybrid” (i.e., using the product state space S × Q) nature
of the imputed value function.

algorithm: inverse optimal control with side information
given: TS, A, Θ ⊆ R

M , ℓ : S ×Act× S → R, sf ∈ S,
{φi : S ×Q → R}Mi=1,

and D =
{(

(α(k), s′
(k)

, q′
(k)), (s(k), q(k))

)}N

k=1

output: imputed value function V̂ (s, q)
begin

1. for each k = 1, . . . , N :

x(k) := (α(k), s′
(k)

, q′
(k)), p(k) := (s(k), q(k)),

Xk := {(α, s′, q′) | s(k)
α

−→ s′, q′ ∈ δ(q(k), L(s(k)))},
define f(x, p(k)) := ℓ(s(k),α, s′) + V̂ (s′, q′),

for all x = (α, s′, q′) ∈ Xk

end for
2. solve convex optimization problem (5)

for an optimal weight θ⋆

3. return V̂ (s, q) =
∑M

i=1 θ
⋆
i φi(s, q)

end

4.2 Gridworld map
We use a 6-by-6 gridworld map for this experiment, as

shown in Figure 2. We assume that an agent placed on

Figure 2: Gridworld map and three expert demon-
strations (red: obstacles, green: goals, blue: initial
state, yellow: final state)

start

end

B

A

(a) q = q0 (b) q = q1

(c) q = q2 (d) q = q3

each square has four actions (up, down, left, right), and all
transitions are deterministic. If the agent is at a border
square and tries to move towards the border (e.g., move
upwards in the top row), the agent will not move. The blue
square is the initial state s0 and the yellow square is the
final goal state sf .

Behavioral demonstrations.
The agent must start from the blue square, pass the two

green squares (in any order) while avoiding all red squares,
and eventually go to the yellow square. Once it reaches the
yellow square, the task is complete. The transition system
has 36 states, and the specification automaton has 4 states.
Thus there are a total of 144 states in the product TS ⊗A,
and at each state, there are 4 available (deterministic) ac-
tions. We show the agent 3 different expert demonstrations
that satisfy the behavioral specification.

Reward model.
We use M = 5 different features as basis functions of the

action-value function, designed as in Table 1.

v6 The optimal state value function corresponding to
the stage cost function that gives 0 only when
the goal state (yellow block with final state q4) is
reached or at the final goal state, otherwise -1.

v7 The optimal state value function corresponding to
the reward function that gives 0 only when a new
intermediate state (green block) is reached or at
the final goal state, otherwise -1.

v8 The optimal state value function corresponding to
the reward function that gives 1 only when an ob-
stacle (red block) is reached, otherwise 0.

v4 The optimal state value function corresponding to
the stage cost function that gives 0 only at transi-
tions in the demonstration, otherwise 1.

v5 The optimal state value function corresponding to
the stage cost function that gives 1 to all transi-
tions.

Table 1: Design of basis functions φi, i = 1, . . . , 5.

4.3 Simulation without side information
In this case, the feature v7 corresponds to the stage cost

function, such that any transition that goes to a green block
has loss 0, otherwise 1. Using the baseline algorithm, the
learned weight vector is

θ = (1, 0,−2290.59, 6396.68,−1),

and the learned optimal non-deterministic strategy is shown
in Figure 3. Note that following the learned strategy an
agent can miss one green block before reaching the yellow
block, or even get stuck, depending on its initial off-policy
location.

4.4 Simulation with side information
In this case, the side information is given as the DFA

shown in Figure 4. Following the side information aware
algorithm, we obtain the learned weight vector

θ = (1,−0.36,−81.22, 230.76,−0.64),

Figure 3: Learned memoryless strategy without side
information. The strategy can miss one green block
before reaching the yellow block because of a lack of
task memory.
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Figure 4: Side information: a DFA constructed for
the example. The atomic proposition p1 is true
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which imputes the mode-dependent strategy shown in Fig-
ure 5. The task is successfully implemented with this strat-
egy, because the DFA is able to track which green squares
have been visited in which order, and whether it is possible
to move on to the yellow square.

5. CRITIQUES AND CONCLUSIONS
In this work, we presented a general framework for impos-

ing behavioral specifications on policies learned from expert
demonstrations. We showed that temporal side informa-
tion in the form of a specification automaton can be used
to effectively constrain the number of free parameters in an
inverse optimal control problem, allowing imputed policies
to have a task memory—rather then a time-based memory,
or no memory at all. It remains to be seen whether this
framework can be put to practical use in dynamically inter-
esting applications. Although we have treated the problem
entirely using deterministic finite-state transition systems
and policies, we can envision several extensions. The most
clear extension is to consider continuous dynamics, in which
case the policy is a hybrid policy over a mixed continuous-
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What’s next?

• Extend to broader dynamics classes—hybrid, nonlinear…
• Expand the family of specifications and languages
• Investigate the role of stochastic policies and partially 

specified side information
• Demonstrate scalability

20

• Open up a broad set of new problems to ideas from control 
and optimization

direct 
extensions

new
opportunities
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