
Inverse Optimal Control with Regular Language Specifications

Ivan Papusha∗ Min Wen† Ufuk Topcu‡

Abstract— Given a description of system dynamics, input con-
straints, and a cost function, the problem of optimal control is to
find a sequence of inputs and a state trajectory that minimizes
the total cost. A related problem posed by Kalman in the 1960s,
called the inverse problem of optimal control, is to determine the
objective function given optimal inputs and state trajectories.
In this work, we pose the inverse problem of optimal control
under temporal behavior specifications. In our setting, we
are given demonstrations of optimal trajectories of a finite
transition system, which may come from an expert, simulation,
or some other process. In addition to these demonstrations, we
are also given extra side information that optimal trajectories
must satisfy temporal behavior constraints, expressed as an
automaton over the state labels. We explore the value of
this temporal side information in imputing an approximately
optimal policy from finitely many demonstrations, and give a
gridworld example with an eye toward extending the framework
to hybrid systems with continuous states.

I. INTRODUCTION

In this work, we study the inverse problem of optimal

control, sometimes called inverse reinforcement learning,

with side specifications. In the ordinary, or forward, problem

of optimal control, the goal is to find a control policy and

an optimal state trajectory that minimize a cost index. In

the inverse problem, one is given samples or demonstrations

of optimal trajectories, or optimal state-action pairs, and the

goal is to determine the cost. This inverse problem is an

important object of study for several reasons.

First, the inverse setting is a natural way of modeling

expert demonstrations. Often when a decision task is too

difficult for a computer to solve, an implementation can

benefit from external knowledge. If one can determine, or

even just approximate, a cost function consistent with the ex-

pert demonstrations, then the forward problem can be solved

to mimic the expert. In this context, the inverse problem

has gained particular attention in the machine learning and

robotics communities [1], [2], [3], although the problem has

also been studied in the control community as far back as

[4], [5, §10.6], and more recently in [6], [7].

Second, the cost function contains information about the

high-level task by providing a link between the underlying

low level dynamics and a higher planning layer. Accurate

determination of the cost can provide insight into why a

certain low-level behavior is observed. Some researchers

∗Institute for Computational Engineering and Sciences, University of
Texas at Austin, TX. (ipapusha@utexas.edu)

†Department of Electrical and Systems Engineering, University of Penn-
sylvania, Philadelphia, PA. (wenm@seas.upenn.edu)

‡Department of Aerospace Engineering and Engineering Mechanics,
University of Texas at Austin, TX. (utopcu@utexas.edu)

This work was supported in part by NSF 1646522, ARO W911NF-15-1-
0592, DARPA W911NF-16-1-0001, and AFRL FA8650-15-C-2546.

have applied inverse optimality to develop cognitive models

and theories of the mind [8], [9].

Even though several formulations have been proposed, the

inverse problem of optimal control is ill-posed, because there

can be many cost functions consistent with the optimality

of the input demonstrations [10]. This drawback typically

manifests in the existence of trivial costs, or costs that have

no generalization power. Furthermore there is a desire to

use inverse optimal control to forego the intricate modeling

of complex systems in favor of generalizing from expert

examples, however in this case the assumption that the

examples are optimal with respect to a cost of a certain

form, or any cost at all, is often violated. Here, the inverse

problem is ill-posed because the expert (typically a human)

is not infallible, and may even supply contradictory data.

As there are many cost functions consistent with the expert

data, some optimality principle (like Occam’s razor) or extra

side information must be introduced to pick just one. In past

formulations, this side information usually comes in through

assumptions on the specific form of the cost or dynamics,

such as a specific basis expansion. In this work, we explore a

different modality for the introduction of side information—

the fact that all trajectories (and not just those belonging

to the demonstration set) must satisfy a known temporal

behavior specification.

Specifically, we propose that in addition to demonstration

trajectories, we are given a finite automaton that describes

allowed behaviors in the forward problem. The automaton

can come from a temporal logic specification known to be

satisfied by the optimal state space trajectories (for example,

co-safe LTL [11], [12]), a regular expression, or some other

known behavioral encoding that tracks, through an internally

forced sequence of discrete mode transitions, the completion

of tasks along the way. For the problem of inverse optimal

control on discrete transition systems, we ask the question:

what is the role of temporal behavior side information in

imputing a policy from expert demonstrations? We argue that

its role is to impart a memory to the imputed policy.

The advantages of this bestowed memory are twofold. The

first advantage is computational: a behavioral specification

allows us to impute task- or mode-varying (rather than more

generally time-varying) policies, reducing the number of free

parameters in a principled way, and allowing for a more

computationally attractive inverse algorithm. The second ad-

vantage is in policy generalization: by formally incorporating

known behavioral specifications into the inverse problem, we

are able to ascribe a natural task-level separation into the

approximation of policies from expert examples.

We first review the (by now) classical inverse problem

of optimal control, and reformulate it to take into account

known temporal behavior specifications in the form of a

specification automaton. We present an algorithm for solving

this inverse problem by convex optimization, as an alternative

to previous work [13], and give examples of how the algo-

rithm would be applied. Specifically, we compare solving

the inverse problem with, and without, taking the behavioral

specifications into account. Finally, we speculate on how our

framework and solution method can be extended to hybrid

systems, and provide a critique on our general approach.

II. INVERSE OPTIMAL CONTROL

A. Solving inverse problems

Consider the problem of finding a minimum of a function,

minimize f(x, p),

with variable x ∈ X ⊆ R
n and parameter p ∈ P ⊆ R

m,

where f : X ×P → R is a real-valued differentiable convex

function of x for every p, and the set X is convex. This is the

forward problem: given a parameter p, determine an optimal

point that minimizes f(·, p), as well as the optimal objective

value f⋆. A simple idea for solving the forward problem is

to solve for x⋆ in the first-order stationarity condition,

∇xf(x
⋆, p) = 0, (1)

provided x⋆ lies in the interior of X .

Now suppose the function f were not known in advance,

and we were instead given a sample data set

D =
{

(x(k), p(k)) | k = 1, . . . , N
}

,

where the point x(k) is optimal for the corresponding param-

eter p(k). The inverse problem is: given D, can we determine

f? The answer to the inverse problem is in general no,

because there can be many functions f consistent with a

given data set D. However, if we had extra side information

about the specific form of f , then we can say more.

For example, we could know that f is convex quadratic,

in which case a data set D consisting of enough linearly

independent examples could be used to fully determine f .

Whether there is a satisfactory answer to the inverse problem

therefore depends on both the provided data D, and the side

information known about f .

We can encode our knowledge about f by writing it as a

linear combination of known functions,

f(x, p) =

M
∑

i=1

θiφ(x, p),

where θi ∈ R are real (unknown) coefficients, and φi : R
n×

R
m → R are (known) basis functions, for all i = 1, . . . ,M .

Since the first-order stationarity condition (1) must hold,

we define the stationarity residual vector

r
(k)
stat (θ) =

M
∑

i=1

θi∇xφ(x
(k), p(k)), k = 1, . . . , N,

for every data point (x(k), p(k)) ∈ D. Note that with the data

set D fixed, the function r
(k)
stat (θ) is a linear function of θ. The

condition that (x(k), p(k)) is an optimal pair is equivalent to

r
(k)
stat (θ) = 0.

Thus to make a guess for θ, we can try to minimize a sum

of penalties on the stationarity residuals,

minimize

N
∑

k=1

ψ(r
(k)
stat (θ))

subject to θ ∈ Θ,

(2)

over the variable θ, where we can make the further restriction

that θ must belong to some set Θ ⊆ R
M , and ψ : Rn → R is

some convex penalty (e.g., a vector p-norm, p ≥ 1). In certain

applications like compressed sensing we can determine θ

exactly, and therefore f exactly, by solving the optimization

problem (2), provided ψ and Θ are chosen well.

B. Well-posedness and normalization

The objective in (2) can be trivially made zero by picking

θ = 0. This is the trivial solution, which is uninforma-

tive. One general technique for preventing its appearance,

proposed in [7], is to fix a normalization for θ, e.g., by

fixing a known weight component θ1 = 1. This is called

a normalization.

C. Inverse problems on a discrete space

In the sequel, we assume that the function f : X×P → R

is not a convex function of its first argument, specifically

because the set X is discrete. In this case, the first-order

stationarity condition ∇xf(x
⋆, p) = 0 does not make sense,

and we must instead use the optimality condition

f(x⋆, p) ≤ f(x, p), for all x ∈ X . (3)

Translating the optimality condition (3) to basis elements,

we say that a weight θ ∈ Θ is consistent with the optimality

of a data point (x(k), p(k)) ∈ D if

M
∑

i=1

θi

(

φi(x, p
(k))− φi(x

(k), p(k))
)

≥ 0, for all x ∈ X .

(4)

This collection of |X | linear inequalities characterizes ob-

jective functions f from the family {
∑M

i=1 θiφi | θ ∈ Θ}
that are consistent with the optimality of the kth data point.

The inverse problem on a discrete space amounts to finding

a feasible weight θ ∈ Θ that satisfies the consistency

condition (4) for all k.

However, in real applications, it may be impossible to

determine a unique consistent weight, because 1) the data

D are typically noisy samples from an expert or oracle that

may be only approximately optimal, and 2) in practice we are

imputing an objective (see next section). In these cases, we

relax the consistency requirement (4) by defining a measure

of inconsistency as follows: note that a weight θ ∈ Θ is not

consistent with the optimality of a data point (x(k), p(k)) if

there exists a variable x ∈ X satisfying

r(k)cons(x, θ) =

M
∑

i=1

θi

(

φi(x, p
(k))− φi(x

(k), p(k))
)

< 0.

In other words, if the kth residual r
(k)
cons(x, θ) is negative for

some x ∈ X , then that value x certifies an inconsistency of

the weight θ with the kth expert demonstration.

We thus define our relaxed measure as the size of the

worst-case consistency residual. In the relaxed inverse prob-

lem we try to minimize the total inconsistency of the data,

minimize

N
∑

k=1

max
x∈Xk

{

(

−r(k)cons(x, θ)
)

+

}

subject to θ ∈ Θ

(5)

over the variable θ (cf. (2)), where we allow Xk ⊆ X to

potentially vary with the data points in D. The notation

z+ = max{0, z} refers to the nonnegative (rectified) part of a

real number z. Interestingly, similar regret-based measures of

inconsistency appear in the rank aggregation literature [14],

and as a hinge loss in statistics [15]. Note that the objective

is convex in θ, because each term is the pointwise maximum

of convex functions of θ. If the set Θ ⊆ R
M is convex, then

the optimization problem (5) is convex, see [16, §3.2.3].

D. Imputing an objective

We make a subtle but important distinction: if f is a sum of

known basis elements, then determining the basis coefficients

θ is the inverse problem. However, we can also assume that

f ≈ f̂ , where f̂ is a sum of basis elements, but we make

no assertions about the form of f itself. In this case, the

approximation f̂ is the imputed objective function [7].

III. PRELIMINARIES

To make the problem setting concrete, we first review

concepts from formal verification. For more extensive back-

ground, see [17], [18]. The optimization problem (5) forms

the bedrock of our approach to inverse optimal control,

thus our eventual goal in defining the role of temporal side

information is to build up a useful definition of f , Xk, and

Θ. Experts can skip to the next section.

We consider system dynamics expressed as transition

systems with transition stage costs (or loss increments), and

side information that is revealed through a deterministic

finite automaton (DFA) that accepts optimal runs of the

transition system. Recall that a transition system is a tuple

TS = (S,Act,→, S0, AP, L), where

• S is a discrete set of states,

• Act is a discrete set of actions,

• →⊆ S ×Act× S is a transition relation,

• S0 ⊆ S is a set of initial states,

• AP is a set of atomic propositions, and

• L : S → 2AP is a state labeling function.

Intuitively, a transition system models system or decision

process dynamics as a path through a directed graph. The

execution starts at a state s0 ∈ S0, and evolves according to

the transition relation. Every element (s, α, s′) ∈→ (written

as s
α
→ s′) corresponds to an edge of the directed graph

connecting the states s and s′ with the action α. Associated

with each transition is a stage cost ℓ(s, α, s′), which is a

real number indicating the cost of making that transition.

The transition system TS is deterministic if |S0| ≤ 1, and

the set of α-successors of every state s ∈ S,

Post(s, α) = {s′ ∈ S | s
α
→ s′},

satisfies |Post(s, α)| ≤ 1 for all s ∈ S and α ∈ Act.

The labeling function L maps a state s to the set of logical

predicates in AP that are true.

The temporal specifications are provided by a determin-

istic finite-state automaton (DFA), which is a tuple A =
(Q,Σ, δ, Q0, F), where

• Q is a finite set of states,

• Σ is a finite alphabet,

• δ : Q× Σ → Q is a transition function,

• Q0 ⊆ Q is a set of start states, and

• F ⊆ Q is a set of final, or accept states.

The link between executions of the transition system and

runs of the automaton is provided by letting the automaton’s

alphabet be Σ := 2AP . (Note that AP is a component of

TS, while Σ is a component of A.) Specifically, every valid

path of states and actions through a transition system TS

s0
α0−→ s1

α1−→ s2
α2−→ · · ·

αT−1

−→ sT (6)

is associated with a corresponding trace (or word) of labels

(or letters) through the automaton A,

L(s0)L(s1)L(s2) . . . L(sT) ∈ Σ∗. (7)

Here, the asterisk (∗) denotes the Kleene star, with Σ∗

denoting finite words with letters in Σ. Each label L(st) ∈
Σ = 2AP is a (possibly empty) subset of AP , indicating

which of the atomic propositions in AP are true in the state

st. For example, if AP = {green,white, goal}, and some

state st satisfied the logical predicate ¬green∧white∧¬goal,

then the state’s label would be

L(st) = {white}.

Finally, the allowed temporal behavior is encoded in the

accept states F of the automaton. For the path (6), we say

that its corresponding trace (7) is accepted by A if there

exists q0 ∈ Q0, as well as a sequence of automaton states

q0, q1, . . . , qT+1 ∈ Q such that

qt+1 = δ(qt, L(st)), t = 0, . . . , T,

and qT+1 ∈ F . Otherwise, the trace is not accepted. The set

of all traces in Σ∗ accepted by A is the language L(A) of

the automaton A.

IV. FORWARD PROBLEM

A. Product formulation

Given a transition system TS = (S,Act,→, S0, AP, L),
a DFA A = (Q, 2AP , δ, Q0, F), a transition cost function

ℓ : S × Act × S → R, an initial state s0 ∈ S0, a final goal

state sf ∈ S, and a terminal time T , the forward problem is

to find an optimal policy π that minimizes the total transition

cost

Jπ(s0) =

T−1
∑

t=0

ℓ(st, µt(st), st+1),

subject to the following two conditions:

1) Dynamics: s0
µ0(s0)
−→ s1

µ1(s1)
−→ · · ·

µT−1(sT−1)
−→ sT = sf ,

is a path through the transition system TS, and

2) Temporal behavior: the sequence of labels visited by

the path through TS is accepted by the automaton A,

L(s0)L(s1) . . . L(sT) ∈ L(A).

We treat the policy π = {µ0, . . . , µT−1} as the optimiza-

tion variable, where each µt : S → Act is a function that

assigns an action to every state. We refer to an optimal policy

as π⋆ = {µ⋆
0, . . . , µ

⋆
T−1}, which has optimal cost J⋆(s0).

Note that the policy is stationary if all the µts are the same

for every t, i.e., π = {µ, µ, . . . , µ}; otherwise the policy π

is time-varying. The first condition links the (deterministic)

evolution of the transition system state to the policy π. The

second condition is equivalent to the existence of a finite run

q0, q1, . . . , qT+1 of the automaton that satisfies qT+1 ∈ F .

The forward problem of determining a policy that mini-

mizes the total of all stage costs, subject to dynamics and

temporal behavior specifications, is a deterministic shortest

path problem on the product space S×Q. This shortest path

problem is efficiently solved by dynamic programming (see,

e.g. [19], [20])

Specifically, we form a product transition system TS ⊗
A = (S × Q,Act,→′, S′

0, AP
′, L′), with a new transition

relation →′ defined by the rule

(s
α

−→ s′) ∧ (q′ = δ(q, L(s))) =⇒ (s, q)
α

−→′ (s′, q′),

and a new set of initial states

S′
0 = {(s0, q) | s0 ∈ S0, ∃q0 ∈ Q0 with q = δ(q0, L(q0))},

cf. [17, §4.2]; the components AP ′ and L′ are irrelevant. We

associate the cost ℓ(s, α, s′) with each new edge (s, q)
α

−→′

(s′, q′), and find the shortest path (in terms of total cost)

from every initial state to (sf , qf) for all qf ∈ F .

Note that for a fixed final horizon T , the only way for the

temporal behavior specifications to be met is if there exists

a path through TS with T transitions, and a corresponding

accepting run of A with T + 1 transitions. In general,

the optimal policy is time-varying. If the optimal policy is

encoded by a time-varying value function V ⋆
t (s), i.e.,

µ⋆
t (s) ∈ argmin

{α|s
α

−→s′}

{

ℓ(s, α, s′) + V ⋆
t+1(s

′)
}

,

and that policy satisfies both the dynamics and temporal

behavior specifications, then given an initial state s0, one

can map the time indices

t = 0, 1, . . . , T

onto some modes of the automaton

q = q1, q2, . . . , qT+1

such that the run q0, q1, . . . , qT+1 is accepted. In other words,

the automaton, in addition to tracking the completion of tasks

by accepting state labels, is also counting time.

B. Time as an automaton

Let T be a positive integer and define the DFA Atime
T+1 as

the automaton that consumes exactly T +1 labels, regardless

of their value, and stops. Its language is given by T + 1
repetitions of any element in 2AP , i.e., all subsets of AP ,

L(Atime
T+1) = (true)T+1,

see Figure 1. Entrance into the states q1, q2, . . . , qT+1 can be

equated with the passage of time epochs 0, . . . , T . Thus, an

optimal path through a transition system TS subject to the

temporal behavior specification given by Atime
T+1 must have

length T . In this setting, the optimal value functions V ⋆
t (·)

q0start q1 q2 · · · qT+1
true true true true

Fig. 1. Automaton Atime
T+1

that consumes exactly T + 1 symbols

can be re-parameterized as V ⋆(·, qt+1), where qt+1 is the

time parameter. The corresponding optimal (mode-varying)

policy is given by

µ⋆(s, q) ∈ argmin
{α|s

α
−→s′,q′=δ(q,L(s))}

{ℓ(s, α, s′) + V ⋆(s′, q′)} .

The finite horizon shortest path problem (without temporal

behavior specifications) is therefore a special case of the

forward problem, where the temporal behavior is given by

the inevitable deterministic progression of states in Atime
T+1.

C. Mode-varying decision process

Let V ⋆(s, q) be the minimum cost-to-go (possibly infinite)

starting at any state (s, q) ∈ S ×Q of the product transition

system TS⊗A, when using an optimal mode-varying policy,

V ⋆(s, q) =
T−1
∑

t=0

ℓ(st, µ
⋆(s, q), st+1), where s0 = s, q0 = q.

If the value function V = V ⋆ were known (for example,

by solving the forward problem), then the process of deter-

mining an optimal action α⋆ = µ⋆(s, q) can be written as a

discrete optimization of the form

minimize ℓ(s, α, s′) + V (s′, q′)

subject to s
α

−→ s′,

q′ = δ(q, L(s)),

(8)

where the variables are x = (α, s′, q′) and the parameters are

p = (s, q). The decision process (8) is simply a restatement

of the dynamic programming principle in terms of the known

value function V . To fix the cost-to-go at the accept states

of A, we must have V (sf , qf) = 0 for all qf ∈ F . Since

the optimal action choice α⋆ depends on both the transition

system state s and the automaton mode q, the mode-varying

process (8) can be viewed as time-invariant in the state space

S × Q under the assumption that the optimal policy in the

forward problem is time-invariant.

V. INVERSE PROBLEM

A. Statement

The goal of the inverse problem is to determine (or impute)

the unknown objective in the decision process (8) from expert

demonstrations. We now make the definitions promised in

Section III. First, we make the basis approximation choice

V̂ (s, q) = θTφ(s, q), and model the decision process (8)

instead as the approximate dynamic programming (ADP)

process

minimize ℓ(s, α, s′) + V̂ (s′, q′)

subject to s
α

−→ s′,

q′ = δ(q, L(s)),

(9)

where the variables are x = (α, s′, q′) and the parameters

are p = (s, q). We must be offered the following training

data as examples:

D =
{(

(α(k), s′
(k)
, q′

(k)
), (s(k), q(k))

)

| k = 1, . . . , N
}

.

The first and second components of the ordered pairs in

D correspond to the variable x ∈ Xk and parameter p ∈ P
in (5), respectively. Note that the side information is included

in the training data. For every presented optimal state and

action in TS, the training data also contain information about

the appropriate mode transitions in A. This task memory

about the expert examples must be provided for the bahvioral

side information to have a benefit to the imputed policy.

B. Solution by convex optimization

The problem is solved by determining a weight θ ∈ Θ
for which the ADP process (9) mimics the expert decision

process (8) as closely as possible. This is done by instanti-

ating the convex optimization problem (5) with the specific

choices

f(x, p) = ℓ(s, α, s′) + V̂ (s′, q′), V̂ (s, q) =
M
∑

i=1

θiφi(s, q),

which corresponds to picking a normalization where the first

component of f , i.e., the stage cost function ℓ, is known.

C. Remarks

1) Freedom in choosing approximating process: For ease

of presentation, we chose the approximating process (9) to

have a known stage cost function and an unknown value

function, a formulation typically ascribed to simpler ADP

methods (such as projected value iteration [19], [20]).

However, we can equally well rewrite the approximating

process (9) by parameterizing the stage cost function as well,

minimize ℓ̂(s, α, s′) + V̂ (s′, q′)

subject to s
α

−→ s′,

q′ = δ(q, L(s)),

with the same variables and training data D. This can be

interpreted as asserting an approximation

ℓ̂(s, α, s′) = θTℓ φℓ(s, α, s
′),

and imputing a combined weight vector (θℓ, θ) ∈ Θℓ ×Θ to

make the approximation as close to the data set as possible.

If the stage cost and value functions are nonnegative, the

inverse problem is ill-posed; for example, if (ℓ̂, V̂) is a valid

pair of incremental loss and value function estimates, then

so is (ℓ̂+ c1, V̂ + c2) for any constants c1, c2.

By picking a known stage cost function ℓ instead of trying

to determine one consistent with the data, we ensure that

the objective in the ADP process (9) is not homogeneous

in the combined weights θ, thus attempting to guarantee a

normalization for which the imputed objective is nontrivial.

A middle ground is possible: we partially specify the stage

cost function as a sum of known and unknown parts,

ℓ̂(s, α, s′) = ℓ0(s, α, s
′) + θTℓ φℓ(s, α, s

′),

where the known part ℓ0 serves as a normalization, and the

unknown part coefficients are to be determined.

Even more generally, we can rewrite the value function at

the landing state, V (s′, q′) as a sum of known and unknown

parts, as well. In this case, the expert data must also contain

known components of landing cost-to-go values.

2) Data set derivability: The data set D can in practice be

obtained from simpler data sets. For example, because both

TS and A are deterministic, the landing states s′
(k)

and q′
(k)

in D are superfluous given the other components, thus we

can derive D from the simpler data set

D′ =
{(

α(k), (s(k), q(k))
)

| k = 1, . . . , N
}

by simulating the transition system. The component q(k)

encodes the task memory. If we further know that the

demonstration examples are entire trajectories (instead of

scattered optimal state-action pairs), then the task memory is

not needed from the expert, i.e., we can derive D from the

data set of optimal state-actions

D′′ =
{

(α(k), s(k)) | k = 1, . . . , N
}

by simulating the expert trajectory in lockstep with the

(known) automaton.

3) Guaranteed temporal behavior: To model the fact that

the value function is fixed at the accept states of TS ⊗ A,

we restrict the allowed weights in the inverse problem (5) to

the affine subspace

Θ0 =
{

θ ∈ R
M |

M
∑

i=1

θiφi(sf , qf) = 0,

for all (sf , qf) ∈ S × F
}

.

(10)

This restriction guarantees that the imputed objective leads

to behaviors in the product space S×Q that are accepted by

the specification automaton. In general, we can restrict the

allowed weights to any set Θ = Θ0 ∩ Θ1, as long as Θ1 is

another convex subset of RM .

4) Penalizing data inconsistency: For a given imputed

value function V̂ in the baseline inverse problem, the exis-

tence of a better (in total cost) state-action pair x = (α, s′) ∈
Xk at a given state s(k) than the alleged optimal state-

action pair x(k) = (α(k), s′
(k)

) indicates a breakdown of

the dynamic programming principle, because the stage cost

plus cost-to-go can be made smaller by choosing x instead

of x(k),

ℓ(s, α, s′) + V̂ (s′) < ℓ(s, α(k), s′
(k)

) + V̂ (s′
(k)

).

In this case, either the value function V̂ (and hence θ) is

wrong, or the “optimal” demonstration x(k) is a mistake.

The objective in (5) remains agnostic to these alternatives

by penalizing, through each term

max
x∈Xk

{

(

−r(k)cons(x, θ)
)

+

}

= max
α,s′

{

max(0, ℓ(s, α(k), s′
(k)

) + V̂θ(s
′(k))

− ℓ(s, α, s′)− V̂θ(s
′))

}

the worst-case “regret” of a policy choosing a state-action

(α, s′) at s(k) instead of (α(k), s′
(k)

). Here, we write V̂θ to

make explicit the dependence of the imputed value function

on the weights θ to be determined.

We can interpret the objective in (5) as a game between

a rational expert providing (through D) optimal state-action

pairs, and a student, who tries to approximate the expert’s

policy by looking at examples where the two differ on the

choice of optimal action. Wherever they differ, the student

tries to make the difference in imputed cost small.

Other measures of inconsistency between the expert and

the student are possible depending on the broad dynamics

setting. For example, if the dynamics are stochastic, we can

minimize the expected regret, or maximize the likelihood of

the observed data [6].

VI. VALUE OF SIDE INFORMATION

A. Twofold comparison

Returning to our original motivation, we ask the ques-

tion: can side information, provided as temporal behavior

constraints that optimal runs of the transition system must

satisfy, be used to our advantage when attempting to recover

the stage cost function from expert training data? We argue

that the answer is yes. The specific value of the temporal

side information is in providing a task-level, instead of a

time-based, memory.

To illustrate, we compare an implementation of baseline

inverse optimal control to inverse optimal control with avail-

able temporal behavior side information. Note that in the

baseline algorithm, we are looking for an optimal time-

invariant strategy, ignoring any behavioral side information;

this would be expected in a classical application of inverse

optimal control or reward learning. We could impute a

general time-varying policy, however the number of free

parameters grows quickly with the number of timesteps,

and in most practical applications the time horizon is either

unknown or very large.

Algorithm: Baseline inverse optimal control

given: TS, Θ ⊆ R
M , ℓ : S ×Act× S → R, sf ∈ S,

{φi : S → R}Mi=1, and D =
{(

(α(k), s′
(k)

), s(k)
)}N

k=1

output: imputed value function V̂ (s)
begin

1. for each k = 1, . . . , N :

x(k) := (α(k), s′
(k)

), p(k) := s(k),

Xk := {(α, s′) | s(k)
α

−→ s′},

define f(x, p(k)) := ℓ(s(k), α, s′) + V̂ (s′),
for all x = (α, s′) ∈ Xk

end for

2. solve convex optimization problem (5)

for an optimal weight θ⋆

3. return V̂ (s) =
∑M

i=1 θ
⋆
i φi(s)

end

Next, we present the algorithm that incorporates behav-

ioral side information. Note that the differences from the

baseline are in the format of the training data, the availability

of the behavioral specification automaton A, and the “hybrid”

(i.e., using the product state space S × Q) nature of the

imputed value function.

Algorithm: Inverse optimal control with side information

given: TS, A, Θ ⊆ R
M , ℓ : S ×Act× S → R, sf ∈ S,

{φi : S ×Q→ R}Mi=1,

and D =
{(

(α(k), s′
(k)
, q′

(k)
), (s(k), q(k))

)}N

k=1

output: imputed value function V̂ (s, q)
begin

1. for each k = 1, . . . , N :

x(k) := (α(k), s′
(k)
, q′

(k)
), p(k) := (s(k), q(k)),

Xk := {(α, s′, q′) | s(k)
α

−→ s′, q′ ∈ δ(q(k), L(s(k)))},

define f(x, p(k)) := ℓ(s(k), α, s′) + V̂ (s′, q′),
for all x = (α, s′, q′) ∈ Xk

end for

2. solve convex optimization problem (5)

for an optimal weight θ⋆

3. return V̂ (s, q) =
∑M

i=1 θ
⋆
i φi(s, q)

end

B. Gridworld experiment

We use a 6 × 6 gridworld map for this experiment, as

shown in Figure 2. We assume that an agent placed on

each square has four actions (up, down, left, right), and all

transitions are deterministic. If the agent is at a border square

and tries to move towards the border (e.g., move upwards in

the top row), the agent will not move. The blue square is the

initial state s0 and the yellow square is the goal state sf .

1) Behavioral demonstrations: The agent must start from

the blue square, pass the two green squares (in any order)

while avoiding all red squares, and eventually go to the

Fig. 2. Gridworld map and three expert demonstrations (red: obstacles,
green: goals, blue: initial state, yellow: final state)

yellow square. Once it reaches the yellow square, the task

is complete. The transition system has 36 states, and the

specification automaton has 4 states. Thus there are a total

of 144 states in the product TS⊗A, and at each state, there

are 4 available (deterministic) actions. We show the agent

3 different expert demonstrations that satisfy the behavioral

specification.

2) Value function model: We use M = 5 different features

as basis functions of the action-value function, designed as

in Table I.

TABLE I

DESIGN OF BASIS FUNCTIONS φi , i = 1, . . . , 5.

Feature Description

φ1 Optimal value function corresponding to the stage cost that
gives 0 only when the goal state (yellow block with final
state qf) is reached or at the final goal state, otherwise 1.

φ2 Optimal value function corresponding to the reward that
gives 0 only when a new intermediate state (green block)
is reached or at the final goal state, otherwise 1.

φ3 Optimal value function corresponding to the reward that
gives 1 only when an obstacle (red block) is reached,
otherwise 0.

φ4 Optimal value function corresponding to the stage cost that
gives 0 only at transitions in the demonstration, otherwise 1.

φ5 Optimal value function corresponding to the stage cost that
gives 1 to all transitions.

3) Regularizaton: The weights θ are constrained to the

unit ball Θ1 = {θ ∈ R
M | ‖θ‖2 ≤ 1} for the baseline test.

With side information, the weights must be in Θ0 ∩Θ1, see

eq. (10).

C. Simulation without side information

In this case, the feature φ2 corresponds to the stage cost

function, such that any transition that goes to a green block

has loss 0, otherwise 1. Using the baseline algorithm, the

learned weight vector is

θ = (0, 0, 0.2562, 0.9528, 0),

and the learned optimal non-deterministic strategy is shown

in Figure 3. Note that following the learned strategy an agent

can miss one green block before reaching the yellow block,

or even get stuck, depending on its initial off-policy location.

Fig. 3. Learned memoryless strategy without side information. The strategy
can miss one green block before reaching the yellow block because of a
lack of task memory.

q0start qtrap

q1

q2

q3 qf

p1

p2

¬p1 ∧ ¬p2

r

p2

¬p2 ∧ ¬r

r

p1

¬p1 ∧ ¬r

r

y

r

¬y ∧ ¬r

true

true

Fig. 4. Side information: a DFA constructed for the example. The atomic
proposition p1 is true whenever the agent is in the green block near the
yellow block, and p2 is true in the other green block; y or r is true if and
only if the agent is visiting a yellow or a red block.

D. Simulation with side information

In this case, the side information is given as the DFA

shown in Figure 4. Following the side information aware

algorithm, we obtain the learned weight vector

θ = (0.0067, 0.0720, 0.2169, 0.9586,−0.0787),

which imputes the mode-dependent strategy shown in Fig-

ure 5. The task is successfully implemented with this strat-

egy, because the DFA is able to track which green squares

have been visited in which order, and whether it is possible

to move on to the yellow square.

VII. CONCLUSION

In this work, we presented a general framework for impos-

ing behavioral specifications on policies learned from expert

demonstrations. We showed that temporal side information

in the form of a specification automaton can be used to

effectively constrain the number of free parameters in an

inverse optimal control problem, allowing imputed policies to

have a task memory—rather then a time-based memory, or no

memory at all. It remains to be seen whether this framework

can be put to practical use in dynamically interesting appli-

cations. Although we have treated the problem entirely using

(a) q = q0 (b) q = q1

(c) q = q2 (d) q = q3

Fig. 5. Learned strategy with side information

deterministic finite-state transition systems and policies, we

can envision several extensions. The most clear extension is

to consider continuous dynamics, in which case the policy

is a hybrid policy over a mixed continuous- (dynamics)

discrete- (behavior automaton) space [21], [22], [23]. By

choosing to present discrete transition system dynamics, we

have sidestepped the important technicalities of hybrid sys-

tems. Our choice in this respect was deliberate—it allowed

us to study the value of temporal side information without

technical distractions. Another clear direction is to rewrite

the dynamics as a Markov decision process, and allow for

randomized (instead of deterministic) imputed policies. With

this modeling choice, we can perhaps better interpret incon-

sistent demonstrations in Bayesian or maximum likelihood

frameworks, e.g., [6], [13].

Key challenges still remain both in scalability and practi-

cality. We showed a fairly small gridworld example; however

it is well known that automaton size grows at least exponen-

tially with the size of a regular expression or temporal logic

formula that defines it. Furthermore, since the specification

automaton must be deterministic, another exponential factor

must be added to determinize useful specifications. To see

what we mean, we invite the assiduous reader to compute the

size of a gridworld specification automaton encoding the side

information that the forward problem is a traveling salesman

trajectory. Thus while it may be beneficial to use a task-level

encoding in some cases, we might still be forced to look for

a memoryless, or time-parameterized strategy in others.

REFERENCES

[1] P. Abbeel and A. Y. Ng, “Apprenticeship learning via inverse rein-
forcement learning,” in International Conference on Machine Learning

(ICML). ACM, 2004, p. 1.
[2] N. D. Ratliff, J. A. Bagnell, and M. A. Zinkevich, “Maximum margin

planning,” in International Conference on Machine learning (ICML).
ACM, 2006, pp. 729–736.

[3] P. Abbeel, A. Coates, and A. Y. Ng, “Autonomous helicopter aerobatics
through apprenticeship learning,” International Journal of Robotics

Research, vol. 29, no. 13, pp. 1608–1639, June 2010.
[4] R. E. Kalman, “When is a linear control system optimal?” Journal of

Basic Engineering, vol. 86, no. 1, pp. 51–60, Mar. 1964.
[5] S. P. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix

Inequalities in System and Control Theory, ser. Studies in Applied
and Numerical Mathematics. Society for Industrial and Applied
Mathematics, 1994, vol. 15.

[6] K. Dvijotham and E. Todorov, “Inverse optimal control with linearly-
solvable MDPs,” in International Conference on Machine learning

(ICML), 2010, pp. 335–342.
[7] A. Keshavarz, Y. Wang, and S. Boyd, “Imputing a convex objective

function,” in IEEE International Symposium on Intelligent Control

(ISIC), Sept. 2011, pp. 613–619, part of IEEE Multi-Conference on
Systems and Control (MSC).

[8] C. L. Baker, J. B. Tenenbaum, and R. R. Saxe, “Goal inference as
inverse planning,” in Conference of the Cognitive Science Society

(CogSci), 2007.
[9] K. J. Arrow, “A difficulty in the concept of social welfare,” Journal

of Political Economy, vol. 58, no. 4, pp. 328–346, 1950.
[10] A. Y. Ng and S. J. Russell, “Algorithms for inverse reinforcement

learning,” in International Conference on Machine Learning (ICML),
2000, pp. 663–670.

[11] O. Kupferman and M. Y. Vardi, “Model checking of safety properties,”
Formal Methods in System Design, vol. 19, no. 3, pp. 291–314, 2001.

[12] T. Latvala, “Efficient model checking of safety properties,” in In-

ternational SPIN Workshop on Model Checking of Software, ser.
Lecture Notes in Computer Science, T. Ball and S. K. Rajamani, Eds.
Springer, 2003, vol. 2648, pp. 74–88.

[13] M. Wen, I. Papusha, and U. Topcu, “Learning from demonstrations
with high-level side information,” in International Joint Conference

on Artificial Intelligence (IJCAI), Aug. 2017, pp. 3055–3061.
[14] C. Dwork, R. Kumar, M. Naor, and D. Sivakumar, “Rank aggregation

methods for the web,” in International Conference on World Wide Web

(WWW). ACM, 2001, pp. 613–622.
[15] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical

Learning: Data Mining, Inference, and Prediction, 2nd ed., ser.
Springer Series in Statistics. Springer, 2009.

[16] S. P. Boyd and L. Vandenberghe, Convex Optimization. Cambridge
University Press, 2004.

[17] C. Baier and J.-P. Katoen, Principles of Model Checking, ser. Repre-
sentation and Mind. MIT Press, 2008.

[18] M. Sipser, Introduction to the Theory of Computation, 2nd ed. Thom-
son Course Technology, 2006.

[19] D. P. Bertsekas, Dynamic Programming and Optimal Control, 3rd ed.
Athena Scientific, 2005, vol. I and II.

[20] D. P. Bertsekas and J. N. Tsitsiklis, Neuro-Dynamic Programming.
Athena Scientific, 1996.

[21] I. Papusha, J. Fu, U. Topcu, and R. M. Murray, “Automata theory
meets approximate dynamic programming: Optimal control with tem-
poral logic constraints,” in IEEE Conference on Decision and Control

(CDC), Dec. 2016, pp. 434–440.
[22] J. Fu, I. Papusha, and U. Topcu, “Sampling-based approximate opti-

mal control under temporal logic constraints,” in ACM International

Conference on Hybrid Systems: Computation and Control (HSCC),
Apr. 2017, pp. 227–235.

[23] L. Li and J. Fu, “Sampling-based approximate optimal temporal
logic planning,” in IEEE International Conference on Robotics and

Automation (ICRA), May 2017, pp. 1328–1335.
[24] R. S. Sutton and A. G. Barto, Introduction to Reinforcement Learning.

MIT Press, 1998.

