
Hough Transform for Directional Orientation
Ivan Papusha, Matthew Ho

Stanford Department of Electrical Engineering
EE368 Spring 2010

Abstract—In this work, we propose several direct Hough-space
and image-space methods for detecting vanishing points in an
image, with an eye towards embedded implementation in an
Android mobile device. In addition, we propose and implement
an exhaustive scheme for calculating a best-case estimate of the
vanishing points, given that the number of vanishing points is
known ahead of time.

I. INTRODUCTION

There has been increased interest in image processing on a
mobile platform in recent years. Due to consumer demand and
advances in processor technology, computationally demanding
applications previously untenable are becoming more and
more ubiquitous. For example, image analysis and processing
is one of the primary drivers of GPUs on mobile devices.

A mobile platform optimized for image processing lends
itself well to a large number of consumer applications. Our
objective for this project is to investigate one of these applica-
tions: detecting vanishing points in an image, which might be
used in a vision-based system for, e.g., robot localization and
3D environment extraction. A vanishing point is the apparent
convergence of parallel lines under perspective distortion. As
human environments are characterized by straight lines and
orthogonal edges, we believe that our project can serve as a
basis for a wide range of robust indoor localization schemes.

In Section II we discuss the motivation and related work.
Section III details our implementation for detecting one van-
ishing point, and discusses the issues involved with multiple
vanishing points. Finally, Section IV gives the experimental
results, and hints at further research.

II. RELATED WORK

Zhang et.al. [1] make the observation that human-made
indoor and outdoor environments, e.g., buildings and hallways,
are endowed with a large number of structured and orthogonal
lines, which define the image perspective and can act as
features for building recognition. Jung et.al. [2] propose direct
Hough-space methods for detecting rectangles in an image by
considering relations among the Hough peaks imposed by the
underlying geometry of a rectangle. Cantoni et.al. [3] describe
a parameter-space Hough procedure, effectively a higher-order
Hough transform, which they use with limited success to
count the number of vanishing points in an image. Finally,
Bosse, et.al. [4] successfully use vanishing points to navigate
a Pioneer robot in an indoor environment.

x

y

θ1 θ2

ρ2

ρ1

l1

l2

Fig. 1. Illustration of Hough parameters as they relate to lines in image
space. Here line l1 is uniquely identified by its perpendicular to the origin,
which has length ρ1, and angle from x-axis given by θ1. Similarly, for l2.

III. DIRECTIONAL ORIENTATION

A. Hough transform and thresholding

The Hough transform of a binary image is given by a
binning operation. Associated with each pixel (x, y) is a
continuous set of all possible lines of infinite extent, which
could go through that point. Such lines are parameterized by

ρ = x cos(θ) + y sin(θ).

Figure 1 illustrates this setup. Without any loss of information
we can take θ to range over [−π/2, π/2]. If the original
image has width W and height H , then ρ can range over
[−ρmax, ρmax], where ρmax =

√
W 2 +H2. The Hough space

is defined by a finite rectangle [−ρmax, ρmax] × [−π/2, π/2],
which is split into rectangular bins. For each nonzero point
(x, y) in the original binary image, the Hough transform draws
a “sinusoid” in Hough space by incrementing the bin counts
along the discretized curve ρ = x cos(θ) + y sin(θ) by one.
Because the bins are each labeled by a set of parameters (ρ, θ),
these in turn correspond to possible lines in image space.
Conversely, if several points in image space lie along a line,
the bin count for the (ρ, θ) corresponding to the line through
these points will be high. Peaks in the the Hough domain
correspond to a high likelihood of a line in the image domain.
The Hough procedure is readily extended to gray-level images,
where the bins are incremented in proportion to the gray-level
value of the pixel in original image space.

For the purposes of detecting strong lines using the Hough
transform, it is profitable to first preprocess the image by
finding the edges. There is extensive literature on the problem
of detecting edges in an image. See, e.g., Gonzalez et. al. [5].

Fig. 2. Typical thresholded, horizontal and vertical differences edge map
as a preprocessing step before Hough transform. Here, edges between the
floor tiles guide the eye to a visible vanishing point at the top right, and an
invisible vanishing point off-image and to the left. The vertical wall edges and
paintings also hint at a vanishing point at infinity. Original image displayed
in Figure 4

While Canny and Sobel methods are typically more robust, we
found that simple horizontal and vertical differencing sufficed
for our application. A typical thresholded edge map is shown
in Figure 2. For speed and implementation on the mobile
Android phone, all processing was done on the single blue
channel, as using the true average gray-level values gives
comparable results with an unnecessary extra averaging step.

The binary Hough procedure takes time proportional to the
number of active edge pixels in the thresholded edge map,
thus it is helpful to de-noise the edge detected image from
stray pixels that ostensibly do not belong to any edges by
pre-blurring and morphologically closing the edge map.

B. One vanishing point

The Hough transform procedure generates a set of n Hough
peaks (ρ1, θ1), (ρ2, θ2), . . . , (ρn, θn) and their bin counts,
which we interpret as weights w1, w2, . . . , wn. A large weight
wk, for instance, corresponds to a large Hough bin count at
point (ρk, θk), giving credence to the line parameterized by

ρk = x cos(θk) + y sin(θk),

in proportion to its length in the original image. Supposing
that all n lines are to intersect at the same point, or nearly the
same point (x0, y0), we can extract that intersection point by
solving the approximation problem:

cos(θ1) sin(θ1)
cos(θ2) sin(θ2)

...
...

cos(θn) sin(θn)


[
x0

y0

]
≈


ρ1

ρ2

...
ρn

 (1)

In other words, we find the best-fit sinusoid parameterized by
(x0, y0) directly in the Hough domain by forming a matrix
A ∈ Rn×2 and vector ρ ∈ Rn, and seeking to make the
difference ‖Ax − ρ‖, x ∈ R2 as small as possible. Formally,
x is a solution to the optimization problem

min
x∈R2

‖Ax− ρ‖, (2)

which is convex for any Lp-norm (p ≥ 1) and is readily solved
for several norms and choices of p:
• L2 norm: When A is full-rank, the optimal x satisfies the

normal equations

ATAx = AT ρ,

that is, x = (ATA)−1AT ρ minimizes the objective in (2)
using the Euclidean distance metric. If the two columns of
A are given by a1, a2 ∈ Rn, then ATA is 2×2 symmetric
with elements:

ATA =
[
aT
1 a1 aT

1 a2

aT
2 a1 aT

2 a2

]
for which there is an explicit formula for the inverse, thus
the optimal x is

x = (ATA)−1AT ρ

=
1

det(ATA)

[
aT
2 a2 −aT

1 a2

−aT
2 a1 aT

1 a1

] [
aT
1 ρ
aT
2 ρ

]
• L1 norm: In this case, no closed-form solution for x can

be given, however the problem is readily reformulated as
an inequality constrained linear program, for which fast
interior point iterative methods (e.g., log-barrier, primal-
dual) exist. See, for instance, Boyd et.al. [6]

• Quadratic W -norm: The weighted least-squares setting,
where the quadratic norm ‖ · ‖W induced by the n ×
n matrix W = diag(w1, w2, . . . , wn) is defined by
‖x‖W := (xTWx)1/2 = ‖W 1/2x‖2 is equivalent to a
least-squares L2-norm problem. Here, one interprets the
weights wj as the degree to which one should incorporate
the line parameterized by (ρj , θj) as contributing to the
intersection point. The Hough transform bin counts serve
as the weights, with high bin counts corresponding to
large weights.

In practice, the L2 and W -norm solutions are easiest to
implement on the Android phone, although in our experiments
the L1-norm solution usually produced better results. Evi-
dently, the L1 solution places much less emphasis on outlying
line intersections than the quadratic norms, which allows for
more robust intersection detection. (See Figure 4.)

In the quadratic norms, the matrix inversion (ATA)−1 is
characterized by the size of the determinant, |det(ATA)|,
which if small, suggests poor conditioning. Looking back
at (1), this corresponds to a low-rank condition, where all the
θj values are close to each other, meaning that all the extracted
lines are approximately parallel, i.e., the vanishing point is at
infinity.

Just as the (ρ, θ) parameterization of the Hough transform
avoids numerical instabilities for vertical lines in the image
domain, this numerical problem of parallel lines can be
avoided by considering a reparameterization of the image
domain, where intersection points at infinity are projectively
mapped to a sphere. For instance, Bosse, et.al. [4] work in an
omnidirectional projective geometry, which means that van-
ishing points at infinity are gracefully handled from the start.

Our application does not require such precise localization,
however, we choose to remain in the more familiar linear
regime, and simply output a direction-to-vanishing point when
it is sufficiently far off-screen, rather than a precise estimate
of its location.

C. Multiple vanishing points
In general an image contains multiple vanishing points.

Depending on the major lines in the image, that number,
K, can be quite large, but in the highly structured indoor
environments that we consider, K is usually no more than
2 or 3. If one knows K ahead of time, an easy first step is to
consider all pair-wise intersections between the n lines, and
cluster them into K clusters. We used a standard K-means
procedure described by Algorithm 1.

Algorithm 1 K-means (intersections)
Input: number of vanishing points: K,
input lines: (ρ1, θ1), . . . , (ρn, θn),
number of pairwise intersections: N = n(n− 1)/2,
pairwise intersections: {(xj , yj)}Nj=1

for j = 1 to N do
labelj ← random label from {1, . . . ,K}.

end for
repeat

for k = 1 to K do
Vk ← {j | labelj = k}
centrk ← arg min(x,y)∈R2

∑
j∈Vk

‖(xj , yj)− (x, y)‖
end for
for j = 1 to N do
labelj ← arg mink=1,...,K ‖(xj , yj)− centrk‖

end for
until labelj’s are stationary
return {centrk}Kk=1 as the K vanishing point estimates.

For the case K = 1, as illustrated in Figure 4, the
centroid of the all-pairs intersection points of the vanishing
lines (Algorithm 1, K = 1) do not in general coincide with
the best-estimate intersection achieved by solving the full
optimization problem (2), which is initially surprising, but has
a ready interpretation: whereas (2) “wiggles” the lines a little
so as to find a common point of intersection, Algorithm 1
“wiggles” the intersection points so as to get them close to
some purported vanishing point. Evidently, by computing the
all-pairs intersections, one loses all the line information from
which they were generated, thereby reducing vanishing point
estimation accuracy. This makes sense, because the vanishing
points in an image are characterized by vanishing lines, which
happen to intersect at vanishing points by the rules of projec-
tive geometry, not by all possible line intersections, some of
which might happen to be vanishing points. Clearly, the first-
class object to consider is a line (point in Hough space), which
belongs to a vanishing point, not a point (sinusoid in Hough
space), which belongs to a vanishing line.

When the number of vanishing points K increases from
1, the K-means procedure described in Algorithm 1 is able

ρ

θ

(ρ1, θ1) (ρ2, θ2)

(ρ3, θ3)

(ρ4, θ4)

Fig. 3. Visualization in the Hough domain. Points (ρ1, θ1), . . . , (ρ4, θ4)
in Hough space each correspond to lines in image space. Here,
(ρ1, θ1), . . . , (ρ3, θ3) lie on the same sinusoid, whose best fit parameters
(x, y) in accordance with Equation (3) we interpret as the mutual intersection
of the three lines in image space. (ρ4, θ4) is not on the same sinusoid, and
hence does not give credence to a mutual intersection.

to cluster the line intersections, with clusters giving a good
direction-to-vanishing point, especially if the vanishing point
is off-screen. However, even when a vanishing point is visible
in the original image, the cluster centroids are adversely
“pulled” away from the purported vanishing point by stray
lines intersecting with existing lines, and thus by themselves
provide poor estimates of the vanishing point location. The
stray lines create extra pairwise intersections, changing the
cluster centroids’ locations.

As a result, we really wish to classify the n lines (corre-
sponding to peaks in the Hough transformed-image), rather
than the n(n − 1)/2 intersection points, as belonging to one
of K vanishing points. The main observation in Algorithm 2
is that a set of lines characterized by (ρ1, θ1), . . . , (ρn, θn)
coordinates in the Hough domain all intersect at the same
point in the image domain if and only if the best-fit sinusoid

ρ = x cos(θ) + y sin(θ) (3)

in the Hough domain, with parameters x and y, actually goes
through the points (ρ1, θ1), . . . , (ρn, θn) See Figure 3.

In principle, if the number of lines n is small (∼ 10), and
we expect that there are exactly K (∼ 2 or 3) vanishing points
in the image, one can run an exhaustive calculation, which is
tractable even on a mobile device. Algorithm 2 searches all(

n
K

)
ways to assign the n lines to K vanishing points. In each

case, the best assignment is given by the smallest least-squares
error achieved by all the pairings.

IV. EXPERIMENTAL RESULTS

Despite the fact that Best-L2 is exhaustive, its execution
time is small in comparison with the Hough transform line-
extraction. At the same time, its shortcoming is in relying on a
fixed value K of vanishing points for which to search, which
is in general not known ahead of time. As shown in Figure 4,
in which we use K = 2, Best-L2 finds both the vanishing
points beautifully. The two best-fit sinusoids for that image
are illustrated in Figure 5. However, when the assumption

Algorithm 2 Best-L2 (exhaustive)
Input: number of vanishing points: K,
input lines: (ρ1, θ1), . . . , (ρn, θn).
L ← {1, 2, . . . , n}
best err ←∞
V ← ∅
for all pairwise disjoint partitions S1, S2, . . . , SK ⊆ L,
with Si ∩ Sj = ∅, i 6= j, and

⋃K
j=1 Sj = L do

for j = 1 to K do
Aj ← rows Sj of A in equation (1).
ρj ← rows Sj of ρ in equation (1).
x∗j ← arg minx∈R2 ‖Ajx− ρj‖2

end for
cum err ←

∑n
j=1 ‖Ajx

∗
j − ρj‖2

if cum err < best err then
best err ← cum err
V ← {x∗1, x∗2, . . . , x∗K}

end if
end for
return V as the K vanishing point estimates.

K = 2 is violated, as in Figure 6, Best-L2 suffers from
“overfitting.” Incidentally, in both cases, where the vanishing
point is visible and on-screen, the L1 method finds the “main”
vanishing point with no prior assumptions on K. Note that in
all cases, the Hough line fidelity, which is heavily dependent
on thresholding parameters in the edge detection and Hough
peak finding steps, has a big impact on the extracted vanishing
point.

Table I shows typical timing for a 320× 240 downsampled
image. Here we see that the majority of the time is taken by
our simple implementation of the Hough transform. Fernandes
et.al. [7] suggests a heuristic for an improved Hough transform
voting scheme, and get close to real-time performance, which
we expect can be achieved for the small images we consider,
especially if we use Android’s Native Development Kit (NDK)
to speed up the operations on the mobile device. In addition,
when the number of vanishing points is low, Table I suggests
that even the exhaustive Best-L2 is sufficiently fast for real-
time embedded implementation. We find that smaller image
sizes and more coarse Hough domain discretizations give even
better performance, at the expense of decreased line detection
accuracy. A potential area for further research is to consider
Hough-space methods like Best-L2 which deal directly with a
larger number of poorly localized lines.

V. CONCLUSION

The methods presented in this project are able to extract van-
ishing points in structured indoor environments, which can be
used to reconstruct a partial 3-dimensional environment map.
After tuning thresholding parameters, and relevant Hough
transform resolutions, we were able to find the vanishing
points within milliseconds on a current desktop computer, and
within a few seconds on a mobile Android device. The biggest
time sink, as expected, is the Hough transform procedure,

320× 240 image PC (2.2 GHz) Motorola DROID

Edge Detect 34ms 0.6s
Hough Transform 100ms 7.2s

Peak Detect < 20ms 200ms
Least Squares L2, K = 1 < 20ms < 1ms

Best-L2, K = 2 80ms ∼
Best-L2, K = 3 0.7s ∼

TABLE I
TYPICAL TIMING FOR 320× 240 DOWN-SAMPLED IMAGE

Fig. 4. Original grayscale image with one visible vanishing point, and 15
strongest lines (corresponding to floor tiles) superimposed. Line intersections
are marked by blue solid circles (many are off-screen), and estimates of
vanishing point location using the methods described in this paper. In order of
worst to best: K = 1 centroid, L2, Weighted L2, L1, and Best-L2. The L1

and Best-L2 methods estimate the vanishing point almost spot-on, however
Best-L2 also detects the other vanishing point off screen and to the left.

Fig. 5. Hough-domain view of the edge map, with 15 largest peaks denoted
by squares, and best-fit K = 2 sinusoids that explain the peaks.

which bins over all pixels in the edge transformed image. The
noisy line methods developed here, including Best-L2 and K-
means, work with the low-resolution Hough images to find a
best estimate of the vanishing points. We also make reference
to a surprisingly robust family of line-intersection algorithms
based on the L1 norm.

Mobile devices have reached a sufficient level of com-

Fig. 6. Hough transform with best-fit two K = 2 vanishing point sinusoids
(left) and associated hallway image (right) for which Best-L2 fails. Here the
assumption of K = 2 vanishing points is a poor one, since there is only one
detected line (bottom) which reenforces that assumption.

putational capability, where direct implementation of fairly
complex image processing algorithms allows for useful appli-
cations. Further work would continue to optimize the Hough
vanishing point procedure for robustness and speed. We also
direct the reader to higher-order Hough [3], [7], as well as
spherical projection [4], and RANSAC-based methods.

ACKNOWLEDGMENT

Ivan Papusha developed and tested the main algorithms in
Matlab, while Matthew Ho developed and tested the Android-
based algorithms in parallel. Finally, the authors would like to
thank Prof. Bernd Girod and the EE368 staff for the excellent
course materials and guidance.

REFERENCES

[1] W. Zhang and J. Kosecka, “Experiments in building recognition,” George
Mason University, Tech. Rep. GMU-CS-TR-2004-3, 2005.

[2] C. Jung and R. Schramm, “Rectangle detection based on a windowed
hough transform,” in Computer Graphics and Image Processing, 2004.
Proceedings. 17th Brazilian Symposium on, 17-20 2004, pp. 113–120.

[3] V. Cantoni, L. Lombardi, M. Porta, and N. Sicard, “Vanishing point
detection: Representation analysis and new approaches,” in Proceedings
of the 11th International Conference on Image Analysis and Processing,
2001, pp. 26–28.

[4] M. Bosse, R. Rikoski, J. Leonard, and S. Teller, “Vanishing points and
3d lines from omnidirectional video,” in Proceedings of the International
Conference on Image Processing, vol. 3, September 2002, pp. 513–516.

[5] R. C. Gonzalez and R. E. Woods, Digital Image Processing, 3rd ed.
Prentice Hall, 2008.

[6] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge
University Press, 2004.

[7] L. A. Fernandes and M. M. Oliveira, “Real-time line detection through
an improved hough transform voting scheme,” Pattern Recognition,
vol. 41, no. 1, pp. 299 – 314, 2008.

[8] M. Zuliani, “Ransac for dummies,” http://vision.ece.ucsb.edu/ zu-
liani/Research/RANSAC/docs/RANSAC4Dummies.pdf, 2009.

[9] M. Langer, “Finding vanishing points,” Lecture notes,
http://www.cim.mcgill.ca/ langer/558.html, October 2009.

[10] J. Wang, F. Dong, T. Takegami, E. Go, and K. Hirota, “A 3d pseudo-
reconstruction from single image based on vanishing point,” in Journal
of Advanced Computational Intelligence and Intelligent Informatics
Vol.13, 2009.

