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X-in-the-loop control

saturation X _/lI/_

function [c1, ¢2, c3] = mscript(genl, gen2)

global state;
switch (state)
case 0:

if genl == 1 and gen2 == 1 then
X ( state = 0;cl = 1;c2=1;c3 =0;
else if genl == 0 and gen2 == 0 then
SOftwa re state = 1; c1 = 0; ¢2 = 0; c3 = 0;
end if
case 1:

end switch
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X-in-the-loop control

(and verification for it)

saturation X = j‘g

function [c1, ¢2, c3] = mscript(genl, gen2)

global state;
switch (state)
case 0:
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2) multiplexing functions > w = p(z,y, 2)
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HAE: Y, 2) = Y, otherwise
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Why care about AMNs?

AMNSs are expressive.
NNs AMNSs

Deep multilayer feedforward networks with

piecewise-affine nonlinearities are a
g piecewise-affine
SpeCIaI case. nonlinearities

\ error
KGR ey
/o \\O/ output layer

hidden layer 1 hidden layer 2

Can automatically translate them
iInto AMNSs.

input layer

AMNSs can be trained through a modification of the
back-propagation algorithm
(i.e. weak derivatives of y can be efficiently computed).
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Sounds like a rehash of neural networks?

They are similar but...

AMNSs can express discontinuous functions

a switched system its AMN representation
A~ x(t), ifz1(t) <0, sw _
e+ = { 420 L0 < @) = (A" A", )

AMNs can be encoded as satisfiability modulo theory (SMT) instances.
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Fine, but does the difference matter?

The answer depends on what you want to do.

NNs AMNs

piecewise-affine
nonlinearities

Learning view: Verification view:
“Can train so much more” “Can do computational analysis”
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smt-lib.org

SMT-LIB

THE SATISFIABILITY MODULO THEORIES LIBRARY

SMT Solvers

This is an incomplete list of publicly available SMT solvers. Please contact us if you have or know of another solver not
listed here.

Current Systems

To our knowledge, the following systems (listed alphabetically) were under active development in 2015: Alt-Ergo,
AProVE, Boolector, CVC4, MathSAT 5, OpenSMT 2, raSAT, SMTInterpol, SMT-RAT, STP, veriT, Yices 2, Z3.

Older Systems

To our knowledge, the following systems are no longer current as their development has been discontinued. They are
included for historical reasons and comparison purposes. Ario, Barcelogic, Beaver, CVC3, DPT, Fx7, haRVey, ICS,
iSAT3, LPSAT, MathSAT 4, MiniSmt, Mistral, OpenSMT, RDL, SatEEn, Simplify, Simplics, SONOLAR, Spear, STeP,
SVC, SWORD, UCLID, Yices.
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What is SMT (satisfiability modulo theories)?

- Essentially, constraint solving

- A bad name for a useful and extremely practical idea.

- Burgeoning and vibrant area of CS research

fomlas2018.fortiss.org
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Aalto University, Helsinki, Finland, July 3-5
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SMT-LIB

Formal methods for ML-enabled
ystems (FoMLAS'18)

Wit e ]

ntact us if you have or know of another solver not

April 21, 2018
Thessaloniki, Greece

nder active development in 2015: Alt-Ergo,
rpol, SMT-RAT, STP, veriT, Yices 2, Z3.

FORMAL METHODS FOR ML-ENABLED AUTONOMOUS
SYSTEMS (FOMLAS 2018)

FOMLAS 2018 will be held on April 21, 2018 in Thessaloniki, Greece as a satellite workshop of the European Joint Conferences on Theory and Practice of Software
(ETAPS'18).

r development has been discontinued. They are
ogic, Beaver, CVC3, DPT, Fx7, haRVey, ICS,
N, Simplify, Simplics, SONOLAR, Spear, STeP,

After the well-known DARPA Urban challenge, there have been significant improvements towards autonomous driving. In the past few years, the major theme when
building self-driving cars has shifted to deep learning and probabilistic technigues. When these new algorithms act as key components in autonomous driving, they
create substantial technological challenges in terms of explainability (e.g., can | explain what is happening inside the machine-learning algorithm?), predictability and
correctness (e.g., can | predict what will happen next in the algorithm, or how good can the machine learning component generalize?), and accountability (e.g., when
an accident occurs, can one find the root cause, or who is the one to blame?).

This goal of this workshop is to facilitate discussion regarding how formal methods can be used to increase predictability, explainability, and accountability of ML-
enabled autonomous systems. The workshop welcomes results from concept formulation (by connecting these concepts with existing research topics in logic and
games), as well as algorithms, tools or concrete case studies.

FOMLAS'18 is sponsored by the project TdpSW (Towards dependable & predictable SW for ML-based autonomous systems) from fortiss - Landesforschungsinstitut
des Freistaats Bayern.
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State-of-the-art SAT solvers: Brute force yet can handle gigantic problem instances

| MATHEMATICS |

Supercomputer produces a 200-terabyte proof — but isit really mathematics?

Nature Wikipedia

Nevertheless, as of 2016, heuristical SAT-algorithms are able

Maths pr OOf SmaSheS Size reC()rd to solve problem instances involving tens of thousands of

e

variables and formulas consisting of millions of symbols,!]
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Convolutions

13



Verifying vision algorithms

LeNet-5 (Lecun et al. 1998)

C3: f. maps 16@10x10
INPUT C1: feature maps S4: f. maps 16@5x5
6@28x28
32x32 S2: . maps

6@14x14

\
Full conAection ‘ Gaussian connections
Subsampling Convolutions ~ Subsampling Full connection

Convolutions

Safety Verification of Deep Neural Networks*

Xiaowei Huang, Marta Kwiatkowska, Sen Wang and Min Wu

Department of Computer Science, University of Oxford

automobile to bird

automobile to frog

automobile to airplane automobile to horse

Fig. 1. Automobile images (classified correctly) and their perturbed images (classified

wrongly)

Fig. 10. Street sign images. Found an adversarial example for the left image (class

changed into bird house), but cannot find an adversarial example for the right image
for 20,000 dimensions.

13



Verifying vision algorithms

LeNet-5 (Lecun et al. 1998)

C3: f. maps 16@10x10

C1: feature maps
INPUT 6@28x28

32x32 S2: . maps

6@14x14

Convolutions

S4: f. maps 16@5x5

s

Subsampling Convolutions

05: layer pg: jayer OUTPUT
20 84 10

‘ FuIIconAection ‘ Gaussian connections
Full connection

Formal Verification of Piece-Wise Linear

Safety Verification of Deep Neural Networks™

Xiaowei Huang, Marta Kwiatkowska, Sen Wang and Min Wu

Department of Computer Science, University of Oxford

| — R

automobile to bird automobile to frog automobile to airplane automobile to horse

Fig. 1. Automobile images (classified correctly) and their perturbed images (classified
wrongly)

V
KN

Fig. 10. Street sign images. Found an adversarial example for the left image (class

changed into bird house), but cannot find an adversarial example for the right image
for 20,000 dimensions.

Feed-Forward Neural Networks

Riidiger Ehlers

P

(@) ‘3" digit from the (b) 2° digit from the (c) Image classified as
MNIST dataset MNIST dataset digit 2 with 6 = 20

(d) Image classified as
digit 2 with 6 = 30

| ¢
u

linear over-approximation
of ReLLU activation function



Variable
(identity map)

SMT encoding of an AMN

SMT.[x,y] = {y = z}

14



SMT encoding of an AMN

Variable L
(identity map) SMT, [z, y] = {y = =}

Affine B
SM —
transformation Ta(pr) |z, Y] {

a(f) = WE+b,

Fv. (y = Wv +b)
A SMT<P1 [SU, ’U]




SMT encoding of an AMN

Variable B -
(identity map) SMTz[z,y] = {y = z}

s i SMTq(p1)[2, Y] = v-(y v+b)
transformation A SMT,, 2, 0]

a(§) =WE+b,

[ Fu,v,w. (w <0) = (y =u)) \
A(—(w <0) = (y =v))

MUItipleXing SMTM(<P1,<P2,<P3)[m’ y] = < A SMT('D1 :SE, ’U,]

function

— A SMT,, 2, V]

o \ A SMT, [, W] )
N(‘Pl, ¥3, 903)
P2 —»f ()

| — —




SMT encoding of a “triplexer”

SRR “ Computation

Triplexer
S ) = o (z) graph




SMT encoding of a “triplexer”

Y
24 RL4 Ya
: Computation
Triplexer
’ y = ¢5(x) graph
(EI(.’L'l,yl,Zl,---,$4,y4,24,’UJ1,'UJ2,TU3) ER15- \
3
/\(:1:z =T+ b; Ny; =cr+d; Nz, =e;x+ f;)
i=1
SMT _
. SMT [z, Y| = < 3 ?
encoding ve A N\ (25 <0) = (w; = ;) A (=(25 < 0) = (w; =y5))
j=1
A (4 = aqwa + bg A ys = caws + da A 24 = eqw1 + fa)
| A (24 <0) = (y=24)) A (2(22 £ 0) = (y = v4)) J
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System analysis with AMNs in the loop

discrete-time system
with
an AMN ¢

vt =az(t+1) = p(x(t)),

CE(O) — X0,

t=0,1,2,....

16



System analysis with AMNs in the loop

discrete-time system
with T =z(t+1) =p(z(t), z0)==z t=0,1,2,...,
an AMN ¢

Global asymptotic stability: If there exists V: R" — R such that

(V(0)=0) A (x£0—=>V(z)>0) A (V(zt)=V(z)<0),..
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System analysis with AMNSs in the loop

discrete-time system
with 2T =z(t+1) =p(z(t), z0)==z t=0,1,2,...,
an AMN ¢

Global asymptotic stability: If there exists V: R" — R such that

(V(0)=0) A (x£0—=>V(z)>0) A (V(zt)=V(z)<0),..

General idea: Pick a class of V's An example:

such that the sufficient conditions V(z) = max {a’{x + b;}

MT (e.g.
Ce.m b.e expre.ssed a.S an S (9, Yet, any AMN-representable V
with linear arithmetic as the theory). will do. too.

16



Search for Lyapunov certificates

there exists V

Want to solve: dV € V.Vx € X. Lyar(V, x) satisfying the sufficient conditions
for all x

But, cannot (directly) handle “exists for all” quantifiers.
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Search for Lyapunov certificates

there exists V

Want to solve: dV € V.Vx € X. Lyar(V, x) satisfying the sufficient conditions
for all x

But, cannot (directly) handle “exists for all” quantifiers.

Counterexample-guided search:

algorithm: Counterexample guided Lyapunov search
initialize: k:=0, 2o € X, Xy := {zo}
repeat:
1. Search for a candidate Lyapunov function.
if E-SOLVE(X})) then:
Vi, := solution to E-SOLVE(X})
else return FALSE/UNKNOWN
2. Generate counterexample.
if F-sOLVE(V%) then:
Zk41 := solution to F-SOLVE(Vj)
else return TRUE
3. Update counterexample set.
X1 = A U{Tp41}
k:=k+1
until: stopping criterion
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for all x
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algorithm: Counterexample guided Lyapunov search Generate candidate V
initialize: k := X, Xy = -
;’Z}) ot 0, @0 € &, %o := {0} (LYAP imposed over a subset of the states)
1. Search for a candidate Lyapunov function.
if E-SOLVE(X,) then: E-SOLvE(&X,) =3V € V. /\ LYAP(V, x.)
Vi, := solution to E-SOLVE(X}) T.€X
else return FALSE/UNKNOWN -

2. Generate counterexample.

if F-sOLVE(V%) then:
Zk41 := solution to F-SOLVE(Vj)

else return TRUE

3. Update counterexample set.
X1 = A U{Tp41}
k:=k+1

until: stopping criterion
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Search for Lyapunov certificates

there exists V

Want to solve: dV € V.Vx € X. Lyar(V, x) satisfying the sufficient conditions
for all x

But, cannot (directly) handle “exists for all” quantifiers.

Counterexample-guided search:

algorithm: Counterexample guided Lyapunov search Generate candidate V
initialize: k := X, Xy = -
if;) ot 0, @0 € &, %o := {0} (LYAP imposed over a subset of the states)
1. Search for a candidate Lyapunov function.
if E-SOLVE(X,) then: E-SOLvE(&X,) =3V € V. /\ LYAP(V, x.)
Vi, := solution to E-SOLVE(X}) T.€X
else return FALSE/UNKNOWN -

2. Generate counterexample.
if F-sOLVE(V%) then:

Tgy1 = solution to F-SOLVE(V%) F_SOLVE(V) =dr e X. _ILYAP(‘/, CE)

else return TRUE

5 Updote ?ﬂu?ef’{;imp l? set Find states at which LYAP is violated.
AP Revise the conditions for step (1)

until: stopping criterion

— S




Sanity check

A randomly generated linear system
with spectral radius of 0.75.
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Sanity check

A randomly generated linear system
with spectral radius of 0.75.

S iterations of the algorithm
constructs a Lyapunov function.

Each iteration adds a “face” to V.

V(x) = max {a?x + b; }

10

10
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Sanity check

A randomly generated linear system
with spectral radius of 0.75.

S iterations of the algorithm
constructs a Lyapunov function.

Each iteration adds a “face” to V.

V(x) = max {a?x + b; }

10

violating state

5 F
( violating
: /direction

10
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Completeness of AMNSs in function approximation

approximating cos(x) with...

Completeness over continuous 1 triplexer 5 triplexers
functions is inherited from similar
completeness of neural networks.

Given a compact subset X C R"™ and a continuous function f : X — R,

there exists an affine multiplexing network ¢ : X — R that

appm:éimates f arbitrarily well on X in Lo-norm.
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Completeness of AMNSs in function approximation

approximating cos(x) with...

Completeness over continuous 1 triplexer 5 triplexers
functions is inherited from similar
completeness of neural networks.

Given a compact subset X C R"™ and a continuous function f : X — R,

there exists an affine multiplexing network ¢ : X — R that

app-ro:éimates f arbitrarily well on X in Lo-norm.

Open question: Can the added expressivity of AMNs be utilized
for completeness over a broader family of functions?
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Summary

Summary

 X-in-the-loop control
 Affine multiplexing networks

*Connections to system analysis, learning and
decision procedures

r—»1
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Summary

Summary

* X-in-the-loop control X
 Affine multiplexing networks

*Connections to system analysis, learning and R
decision procedures — —

A few (potential) future steps

*Alternative means for nonlinear control synthesis and beating
fundamental limitations

*Training Lyapunov-type certificates in AMN form directly from data
(i.e., simulations)

*Continuous-time dynamics (modulo technicalities)
*Control-oriented theories in SMT
*Domain-specific languages

arbitrary cone

—
_ )z itzek, (AMN: z <0 for z € R)
(Y, 2) = { y, otherwise.

LI —»




Difficulties

At its heart, involves at least (worst-case) an NP-
complete computation

Model-based (IQCs, robust control)

Some good tools exist (Z3, yices), but these
require expert knowledge to use

Writing a new Python toolbox (AMNET) as a
modeling and query layer
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Some good tools exist (Z3, yices), but these
require expert knowledge to use

Writing a new Python toolbox (AMNET) as a
modeling and query layer

= NN(2)

Ax + B
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Difficulties

- At its heart, involves at least (worst-case) an NP-
complete computation

« Model-based (IQCs, robust control)

- Some good tools exist (Z3, yices), but these
require expert knowledge to use

- Writing a new Python toolbox (AMNET) as a
modeling and query layer

https://github.com/ipapusha/amnet
AMNET: Affine Multiplexing Network Toolbox

AMNET is a Python toolbox that assists in building certain kinds of neural networks, and formally verifying their behavior in-the-
loop (under development).

I 1. Multiplexing nonlinearities
tuﬂh;l_ max2(xr) = pulai(x), az(x), az(x))
if (—xy + 2 <0) then x| else x5
(a3 . O3 . Q2
1in0[2->1) | [ lin2[2->1 1inl[2->1 2. Affine transformations
ay(x): (,f.r as(x) : (.’_{ﬂ.r az(x) = —x1 + X2
m N
| vard[a—>2] 3. Input variables

2
re R

Y am z
——O O—Pp [ —» NN(z)
|
ENV Uu
1 " oXe, L Ax + Bu

import numpy as np
from amnet import Variable, Linear, Mu

# a two-dimensional input variable
x = Variable(2, name='x"')

# choose components
al = Linear(np.array([[1, @]1]), x)
a2 = Linear(np.array([[0, 1]1]), x)

# find difference
a3 = Linear(np.array([[-1, 11]1), x)

# if a3 <= 0, returns al; otherwise a2
phimax = Mu(al, a2, a3)

# equivalently, we can also write
# phimax = amnet.atoms.max_all(x)

print phimax
print phimax.eval([1, -2]) # returns: 1
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