Affine Multiplexing Networks:

System Analysis, Learning, and
Computation

Ivan Papusha (joint work with Ufuk Topcu)
Institute for Computational Engineering and Sciences
University of Texas at Austin

P

(linear system)

X-in-the-loop control

P

(linear system)

X-in-the-loop control

saturation

X

L~

—

X-in-the-loop control

saturation X _/lI/_

function [c1, ¢2, c3] = mscript(genl, gen2)

global state;
switch (state)
case 0:

if genl == 1 and gen2 == 1 then
X (state = 0;cl = 1;c2=1;c3 =0;
else if genl == 0 and gen2 == 0 then
SOftwa re state = 1; c1 = 0; ¢2 = 0; c3 = 0;
end if
case 1:

end switch

P

(linear system) —

X-in-the-loop control

(and verification for it)

saturation X = _/lI/_

function [c1, ¢2, c3] = mscript(genl, gen2)

global state;
switch (state)
case 0:
if genl == 1 and gen2 == 1 then
X (state = 0;cl = 1;c2=1;c3 =0;
— else if genl == 0 and gen2 == 0 then
SOftwa re — state = 1; ¢l = 0; c2 = 0; c3 = 0;
end if
case 1:

end switch

P

(linear system) —

X
1
}

classifier

X-in-the-loop control

(and verification for it)

saturation X = j‘g

function [c1, ¢2, c3] = mscript(genl, gen2)

global state;
switch (state)
case 0:

if genl == 1 and gen2 == 1 then
X €« state = 0; ¢l = 1; ¢2 = 1; c3 = 0
— else if genl == 0 and gen2 == 0 then
software X

— state = 1; ¢l = 0; c2 = 0; ¢c3 = 0;

end if

case 1:

end switch

P

(linear system) —

classifier X —

neural network X =

input layer
hidden layer 1 hidden layer 2

Affine Multiplexing Networks (AMNSs)

A directed interconnection of...

r —>— y=oax)

1) affine transformations
=Wax+0b

2) multiplexing functions

Affine Multiplexing Networks (AMNSs)

A directed interconnection of...

r —>— y=oax)

1) affine transformations
=Wax+0b

-

] L] [l x _.
2) multiplexing functions > w = p(z,y, 2)
Y ——0/
R X R" xR — R"
(2,9, 2) = x, if 2 <0
HAE: Y, 2) = Y, otherwise

maximum

—T1 + T2

1 —»1

max(xl, xz)

T2 —» ()

p(xy, x2, —1 + T2)

Examples of AMNs

maximum

—T1 + T2

1 —»1

max(xl , xz)

T2 —» ()

/L(CE’l, Lo, —I1 + 562)

Examples of AMNs

saturation
r+1 —x+1

1—1
_1 — 1 cpsat(x)
0

r—»(

:u(lv “(_17 T,T + 1)7 —T + 1)

maximum

—T1 + T2

1 —»1

ma,x(xl,xz)

T2 —» ()

/L(CE’l, Lo, —I1 + 562)

Examples of AMNs

saturation
r+1 —-z+1 o
1—1
sa r—»1
- 0 o) " (z)
r—(0—0

maximum

—T1 + T2

1 —»1

ma,x(xl,xz)

T2 —» ()

/L(CE’l, Lo, —I1 + 562)

Examples of AMNs

saturation
r+1 —-z+1 o
1—1
sa r—»1
0 0—{0
r—»(

AND gate
21 29
r—1]

/L(M(CE, Y, Zl)a Y, 22)

maximum

—T1 + T2

1 —»1

max(xl, xz)

T2 —» ()

p(xy, x2, —1 + T2)

Examples of AMNs

-

saturation . Re_LU .
(rectified linear unit)
r+1 —-z+1 o
1—1
—1 sat r—»1 -
! o | ¥ (z) " (z)
r—»(0—=0

card(:c) Z?:; .U’(.U’(lv 0, x’i)v 0, _xi)
[zlloo mlz1,pm(ze...), —21+ p(z2. . .))

XOR M(“’(yamazl)hu’(wayaZ1)7z2)
LE u(z,y, 2)

AND gate
21 29
r—1]
1

/L(M(CE, Y, zl)a Y, Z2)

AMNSs compose

S
/\ /\ [/
S S S
VN\I‘O V\l‘o - O
5| s S gl 8
ANRVANVANRYANVANVAN /\ [/
8
235 =z
T g =
NG <
<C

AMNSs compose

’/

wh

<
—

v

)
|
.
§\/
o AN AN A

NV V. VY
8

A 2-layer,
4-mux
AMN

<4

(1) N L4 .

<
N

v

y = g (x)

8
w
A 4

w3

<
w

v

Y V. V VYV VYV

\.
a layer 1 N

r1:= a1+ b T3 := a3x + b3
Welghts Y1 :=c1x + d; .o Y3 := c3x + d3
z1 = ex+ fi 23 1= e3x + f3

w1 = H(ml,yl,zl)
nonlinearities wo = (T2, Y2, 22)

K w3 = (T3, Y3, 23) j

AMNSs compose

’/

8
—

wh

<
—

v

8

|

.

&

A 4
NN N,

NV VvV V. Y

A 2-layer,
4-mux
AMN

)
*)

w2 N L4

<
N

v

-y = ¢ (@)

8
w
A 4

w3

o
w

v

Y V. V VYV VYV

\.
a layer 1 N a layer 2 h

r1:= a1z + b T3 := a3x + b3
weights Y1 = c1T + dp .o+ y3:=c3T+ds Tq = aqw2 + by weights

21 = e1x + .fl 23 := e3x + f3 Y4 ‘= C4w3 + dy
24 = eqw1 + fa

w1 = p(T1,Y1,21) : :
nonlinearities Wo 1= u(a:2, Y2, 22) Yy = ,u(a:4,y4,z4) non“neanty

K w3 = ,LL(CBg, Y3, 23) j K

Why care about AMNs?

AMNSs are expressive.
NNs AMNs

Deep multilayer feedforward networks with

piecewise-affine nonlinearities are a
g piecewise-affine
SpeCIaI case. nonlinearities

Why care about AMNs?

AMNSs are expressive.
NNs AMNs

Deep multilayer feedforward networks with

piecewise-affine nonlinearities are a
g piecewise-affine
SpeCIaI case. nonlinearities

Can automatically translate them
iInto AMNSs.

output layer

input layer
hidden layer 1 hidden layer 2

Why care about AMNs?

AMNSs are expressive.
NNs AMNSs

Deep multilayer feedforward networks with

piecewise-affine nonlinearities are a
g piecewise-affine
SpeCIaI case. nonlinearities

\ error
KGR ey
/o \\O/ output layer

hidden layer 1 hidden layer 2

Can automatically translate them
iInto AMNSs.

input layer

AMNSs can be trained through a modification of the
back-propagation algorithm
(i.e. weak derivatives of y can be efficiently computed).

Sounds like a rehash of neural networks?

They are similar but...

AMNSs can express discontinuous functions
whereas classical (continuous) neural networks cannot.

Sounds like a rehash of neural networks?

They are similar but...

AMNSs can express discontinuous functions

whereas classical (continuous) neural networks cannot.

a switched system

| Ax(t), ifxi(t) <0,
z(t+1) = { Atz(t), otherwise,

its AMN representation

OV (z) = p(A z, At z, el z)

Sounds like a rehash of neural networks?

They are similar but...

AMNSs can express discontinuous functions

a switched system its AMN representation
A~ x(t), ifz1(t) <0, sw _
e+ = { 420 L0 < @) = (A" A",)

AMNs can be encoded as satisfiability modulo theory (SMT) instances.

Fine, but does the difference matter?

The answer depends on what you want to do.

NNs AMNs

piecewise-affine
nonlinearities

Fine, but does the difference matter?

The answer depends on what you want to do.

NNs AMNs

piecewise-affine
nonlinearities

Learning view:
“Can train so much more”

Fine, but does the difference matter?

The answer depends on what you want to do.

NNs AMNs

piecewise-affine
nonlinearities

Learning view: Verification view:
“Can train so much more” “Can do computational analysis”

Beating fundamental limitations of linear feedback

Overcoming a fundamental time-domain
performance limitation by nonlinear control

Hunnekens, Wouw, Nesic (2016)

automatica

Variable gain control part

Beating fundamental limitations of linear feedback

Seron, et al. (1997)
(ptr —1)ePtr +1
pt:

0os

Overcoming a fundamental time-
performance limitation by nonlin >

Hunnekens, Wouw, Nesic (2016)

automatica

Variable gain control part

Beating fundamental limitations of linear feedback

Seron, et al. (1997)

(pt, —1)ePtr 41
Hog = ot, Phase-based,

Overcoming a fundamental time- . _ . _ _
performance limitation by nonlin > =" variable-gain nonlinearity

ae, ifee >0

Hunnekens, Wouw, Nesic (2016)
vgce -\
P (e,) = {O, otherwise

automatica

Variable gain control part

|- - -
—{=
S (L
o |
[

1

: ©
|
1 .
I N——
1

! ©
S
e—
Yy

=

N

l:

3

N

N

v
utput y

Beating fundamental limitations of linear feedback

Seron, et al. (1997)

(pt, — 1)ePtr + 1
Hog = ot, Phase-based,

Overcoming a fundamental time- . _ . _ _
performance limitation by nonlin > =" variable-gain nonlinearity

ae, ifee >0

Hunnekens, Wouw, Nesic (2016)
vgce -\
P (e,) = {O, otherwise

automatica

Variable gain control part

|- - -
—{=
S (L
o |
[

1

: ©
|
1 .
I N——
1

: ©
S
)e——
Yy

=

N

l@

3

N

N

v
utput y

VGC: alpha=7.000000

The nonlinearity as an AMN

©'%(e,e) = ©” (¢”(0,ae, —e, —¢€), ae, e, é)

QOV(CU,y,Zl,ZQ) :M(xvu(xvyazl)azQ) ZZD | | ,3

What is SMT (satisfiability modulo theories)?

- Essentially, constraint solving
- A bad name for a useful and extremely practical idea.

- Burgeoning and vibrant area of CS research

10

What is SMT (satisfiability modulo theories)?

- Essentially, constraint solving

- A bad name for a useful and extremely practical idea.

- Burgeoning and vibrant area of CS research

smt-lib.org

SMT-LIB

THE SATISFIABILITY MODULO THEORIES LIBRARY

SMT Solvers

This is an incomplete list of publicly available SMT solvers. Please contact us if you have or know of another solver not
listed here.

Current Systems

To our knowledge, the following systems (listed alphabetically) were under active development in 2015: Alt-Ergo,
AProVE, Boolector, CVC4, MathSAT 5, OpenSMT 2, raSAT, SMTInterpol, SMT-RAT, STP, veriT, Yices 2, Z3.

Older Systems

To our knowledge, the following systems are no longer current as their development has been discontinued. They are
included for historical reasons and comparison purposes. Ario, Barcelogic, Beaver, CVC3, DPT, Fx7, haRVey, ICS,
iSAT3, LPSAT, MathSAT 4, MiniSmt, Mistral, OpenSMT, RDL, SatEEn, Simplify, Simplics, SONOLAR, Spear, STeP,
SVC, SWORD, UCLID, Yices.

Home

About

News

Standard
Language
Theories
Logics
Examples

Benchmarks

Software
Solvers
Utilities

Contact

Related

Credits

10

What is SMT (satisfiability modulo theories)?

- Essentially, constraint solving

- A bad name for a useful and extremely practical idea.

- Burgeoning and vibrant area of CS research

SAT/SMT Summer School

4 (6th) Intl SAT/SMT/AR Summer School
Lisbon, Portugal, June 22-25, 2016

« to the school website

4 5th Intl SAT/SMT Summer School
Stanford University, California, USA, July 15-17, 2015

« to the school website

4 4th Intl SAT/SMT Summer School
Semmering, Austria, July 10-12, 2014

» to the school website

4 3rd Intl SAT/SMT Summer School
Aalto University, Helsinki, Finland, July 3-5, 2013

» to the school website

4 2nd Intl SAT/SMT Summer School
FDK, Trento, Italy, June 12-15, 2012

» to the school website

4 1stIntl SAT/SMT Solver Summer School
MIT, Boston, Mass, USA, June 12-17, 2011

+ to the school website

smt-lib.org

SMT-LIB

THE SATISFIABILITY MODULO THEORIES LIBRARY

SMT Solvers

This is an incomplete list of publicly available SMT solvers. Please contact us if you have or know of another solver not
listed here.

Current Systems

To our knowledge, the following systems (listed alphabetically) were under active development in 2015: Alt-Ergo,
AProVE, Boolector, CVC4, MathSAT 5, OpenSMT 2, raSAT, SMTInterpol, SMT-RAT, STP, veriT, Yices 2, Z3.

Older Systems

To our knowledge, the following systems are no longer current as their development has been discontinued. They are
included for historical reasons and comparison purposes. Ario, Barcelogic, Beaver, CVC3, DPT, Fx7, haRVey, ICS,
iSAT3, LPSAT, MathSAT 4, MiniSmt, Mistral, OpenSMT, RDL, SatEEn, Simplify, Simplics, SONOLAR, Spear, STeP,
SVC, SWORD, UCLID, Yices.

Home

About

News

Standard
Language
Theories
Logics
Examples

Benchmarks

Software

Solvers

Utilities
Contact
Related

Credits

10

What is SMT (satisfiability modulo theories)?

- Essentially, constraint solving

- A bad name for a useful and extremely practical idea.

- Burgeoning and vibrant area of CS research

fomlas2018.fortiss.org

SAT/SMT Summer School

¢

(6th) Intl SAT/SMT/AR Summer ¢
Lisbon, Portugal, June 22-25, 2016

« to the school website

5th Intl SAT/SMT Summer Scho
Stanford University, California, USA, July 1

« to the school website

4th Intl SAT/SMT Summer Scho
Semmering, Austria, July 10-12, 2014

» to the school website

3rd Intl SAT/SMT Summer Scho
Aalto University, Helsinki, Finland, July 3-5

» to the school website

2nd Intl SAT/SMT Summer Scho
FDK, Trento, Italy, June 12-15, 2012

» to the school website

1st Intl SAT/SMT Solver Summe
MIT, Boston, Mass, USA, June 12-17, 2011

+ to the school website

smt-lib.org

SMT-LIB

Formal methods for ML-enabled
ystems (FoMLAS'18)

Wit e]

ntact us if you have or know of another solver not

April 21, 2018
Thessaloniki, Greece

nder active development in 2015: Alt-Ergo,
rpol, SMT-RAT, STP, veriT, Yices 2, Z3.

FORMAL METHODS FOR ML-ENABLED AUTONOMOUS
SYSTEMS (FOMLAS 2018)

FOMLAS 2018 will be held on April 21, 2018 in Thessaloniki, Greece as a satellite workshop of the European Joint Conferences on Theory and Practice of Software
(ETAPS'18).

r development has been discontinued. They are
ogic, Beaver, CVC3, DPT, Fx7, haRVey, ICS,
N, Simplify, Simplics, SONOLAR, Spear, STeP,

After the well-known DARPA Urban challenge, there have been significant improvements towards autonomous driving. In the past few years, the major theme when
building self-driving cars has shifted to deep learning and probabilistic technigues. When these new algorithms act as key components in autonomous driving, they
create substantial technological challenges in terms of explainability (e.g., can | explain what is happening inside the machine-learning algorithm?), predictability and
correctness (e.g., can | predict what will happen next in the algorithm, or how good can the machine learning component generalize?), and accountability (e.g., when
an accident occurs, can one find the root cause, or who is the one to blame?).

This goal of this workshop is to facilitate discussion regarding how formal methods can be used to increase predictability, explainability, and accountability of ML-
enabled autonomous systems. The workshop welcomes results from concept formulation (by connecting these concepts with existing research topics in logic and
games), as well as algorithms, tools or concrete case studies.

FOMLAS'18 is sponsored by the project TdpSW (Towards dependable & predictable SW for ML-based autonomous systems) from fortiss - Landesforschungsinstitut
des Freistaats Bayern.

Home

About

News

Standard
Language
Theories
Logics
Examples

Benchmarks

Software
Solvers
Utilities

Contact

Related

Credits

10

What is SMT (satisfiability modulo theories)?

- Essentially, constraint solving
- A bad name for a useful and extremely practical idea.

- Burgeoning and vibrant area of CS research .
smt-lib.org

fomlas2018.fortiss.org SMT-LIB

Y, 4 sos =

h;/.'/‘/ / // // =0y

/e /8/ ' —7]
// 4 . - ‘ About
2 /// // Formal methods for ML-enabled = : ntact us if you have or know of another solver not Nows
4 "/ ~,// Autonomous Systems (FolVILAS'18) , =, S
I‘.-‘ [/ —— - - anguage
S5/ o 7 <3 April 21, 2018 o
//// \ AN Thessa|oniki’ Greece nder active development in 2015: Alt-Ergo, .

/ Z - - rpol, SMT-RAT, STP, veriT, Yices 2, Z3.

’___—-Dm

Home

SAT/SMT Summer School

4 (6th) Intl SAT/SMT/AR Summer ¢
Lisbon, Portugal, June 22-25, 2016

o oo | FORMAL METHODS FOR ML-ENABLED AUTONOMOUS

Stanford University, California, USA, July 1 SYST E M S (FO M L AS 2 O 1 8) ogic, Beaver, CVC3, DPT, Fx7, haRVey, ICS, e
it

+ to the school website N, Simplify, Simplics, SONOLAR, Spear, STeP,

FOMLAS 2018 will be held on April 21, 2018 in Thessaloniki, Greece as a satellite workshop of the European Joint Conferences on Theory and Practice of Software conact
4 4th Intl SAT/SMT Summer Scho((£1aps18). Related
Semmering, Austria, July 10-12, 2014 Credits
After the well-known DARPA Urt o h . i " “gant improvements towards autonomous driving. In the past few years, the major theme when
+10 e chodt webelte building self-driving cars has shif technigues. When these new algorithms act as key components in autonomous driving, they
create substantial technological £q. e the machine-learning algorithm?), predictability and

4 3rd Intl SAT/SMT Summer Scho

omponent generalize?), and accountability (e.g., when |
Aalto University, Helsinki, Finland, July 3-5

W Técnico /SAT

correctness (e.g., can | predict w

an accident occurs, can one find

« to the school website
This goal of this workshop is to f

’ 2nd Intl SAT/SMT Summer Scho enabled autonomous systems. T
FDK, Trento, ltaly, June 12-15, 2012 games), as well as algorithms, tq

B concepts Ll S BOA

‘ , Association
» to the school website FOMLAS'18 is sponsored by the g

des Freistaats Bayern.

s systems]

¢ 1stIntl SAT/SMT Solver Summe
MIT, Boston, Mass, USA, June 12-17, 2011

Microsoft Research

+ to the school website

Indranil Saha
Chih-Hong Cheng IIT Kanpur (India)
Fortiss (Germany) 10

What is SMT (satisfiability modulo theories)?

satisfiability: |Boolean combination

((x1 + 223 <B5) V a(x3 < 1) A (z1 > 1)) of

- theory: |linear arithmetic predicates

11

What is SMT (satisfiability modulo theories)?

(1 4+ 223 <5) V =(x3 < 1) A (21 > 1))

@)
Boolean

satisfiability (SAT) solver
\ _/

satisfiability: |Boolean combination
of
theory: |linear arithmetic predicates

a)
Linear programming

solver
_ _J

11

What is SMT (satisfiability modulo theories)?

satisfiability:

(1 4+ 223 <5) V =(x3 < 1) A (21 > 1))

@)
Boolean

theory:

Boolean assignments

Boolean combination

of

linear arithmetic predicates

r

satisfiability (SAT) solver
\ _/

_

» Linear programming
solver

N

_J

11

What is SMT (satisfiability modulo theories)?

satisfiability: |Boolean combination

(1 4+ 223 <5) V =(x3 < 1) A (21 > 1))

@)
Boolean

Boolean assignments

theory: |linear arithmetic predicates

of

<

satisfiability (SAT) solver
\ _/

Variable assignments
or counterexamples

a)
» Linear programming

solver

_ ,

11

What is SMT (satisfiability modulo theories)?

satisfiability: |Boolean combination

(1 4+ 223 <5) V =(x3 < 1) A (21 > 1))

()

theory:

Boolean assignments

of

linear arithmetic predicates

Boolean

<

satisfiability (SAT) solver
_ _J

Variable assignments
or counterexamples

a4)
» Linear programming

solver

_ ,

State-of-the-art SAT solvers: Brute force yet can handle gigantic problem instances

| MATHEMATICS |

Supercomputer produces a 200-terabyte proof — but isit really mathematics?

Nature Wikipedia

Nevertheless, as of 2016, heuristical SAT-algorithms are able

Maths pr OOf SmaSheS Size reC()rd to solve problem instances involving tens of thousands of

e

variables and formulas consisting of millions of symbols,!]

S—— —— ———

11

Future and why (I think) formal methods (will) matter

12

Future and why (I think) formal methods (will) matter

Feedback formalized
Bode, Nyquist, Black

|
>
!

1930s-40s

12

State space, filtering
(Wiener, Bellman, Kalman)

Feedback formalized \ @tls) =E@=®) [4(0),.

Bode, Nyquist, Black

241 = cov (z(t) | y(0)

ey

.....

~ Future and why (I think) formal methods (will) matter

|
1930s-40s

|
1950s-60s

12

Future and why (I think) formal methods (will) matter

State space, filtering
(Wiener, Bellman, Kalman) ©

Golden age
Feedback formalized \ (I =E@®)140).-..v(s). (robust control, adaptive control
Bode, Nyquist, Black \ ™~ v 10-sD-)yp | Mls, convex optimization)

I >
| | |
1930s-40s 1950s-60s 1970s-2000s

en.wikipedia. org/W|k|/PID controller

3000 x 92"- nasa.gov

12

o
1 90% confidence with KF
— mean of state x3

~ Future and why (I think) formal methods (will) matter
- ?:';1?:;2;,:*;‘::;& .99 B |

.ﬂ’ et e
=
faae
:‘v-

-~
s
'w4‘ i e e

State space, filtering [
(Wiener, Bellman, Kalman) &= — L =
Golden age

Feedback formalized \ #¢19=E@®1450...v). (robust control, adaptive control
Bode, Nyquist, Black \ ™~ v 10-sD-)yp | Mls, convex optimization)

| |
>
I | | |

1930s-40s 1950s-60s 1970s-2000s 2004

= g - !:-J-_‘-—_"—.,
en.wikipedia.org/wiki/PID_controller

Stanley the driverless car.

C AN
e

3000 2392/- nasa.gov

12

~ Future and why (I think) formal methods (will) matter

o
[90% confidence with KF
_— ean

3F m of state x3

— realization of state x3
KF estimate of state x3 ol
R d

Golden age
Feedback formalized \ #¢19=E@®1450...v). (robust control, adaptive control
Bode, Nyquist, Black \ ™~ v 10-sD-)yp | Mls, convex optimization)

1930s-40s 1950s-60s 1970s-2000s 2004 2006

Autonomous vehicles, ML deep networks

en.wikipedia.org/wiki/PID_controller

Stanley the driverless car.

3000 292"- nasa.gov

12

~ Future and why (I think) formal methods (will) matter

4
[90°/: confidence with KF
3F — mean of state x3 n
— realization of state x3
s KF estin"late ofstgte x3 | X_29
ﬁ"‘---\ -
m =
i‘. STl
State space, filtering =~ ,
(Wiener, Bellman, Kalman) = |

Golden age
Feedback formalized \ (| =B 40).....v(s). (robust control, adaptive control

Bode, Nyquist, Black \ 1967 ®14©---)- Kyp | Mis, convex optimization)

P ———

| | L
| — | 1
1930s-40s 1950s-60s 1970s-2000s 2004 2006
X-15 — Autonomous vehicles, ML deep networks

Stanley the driverless car.

& & ,.. : 4
3000 x 2392 - nasa.gov

12

Future and why

:] 90 / d ce wnh KF
me of state x3

—_— realization of state x3

KF estimate of state x3

formal methods (will) matter

State sg |

Feedback formalized W[S‘:E(fc(”'y‘m). (robust control, adaptive control
Bode, Nyquist, Black \ ~1967" 1996 “) KYP, LMIs, convex optimization)

| | l
| — | | —
1930s-40s 1950s-60s 1970s-2000s 2004 2006
X-15 — Autonomous vehicles, ML deep networks

: e Stanley the driverless car.
en.wikipedia. org/W|k|/PID controller

3000 2392/- nasa.gov

12

Future and why

:] 90 / d ce wnh KF
me of state x3

—_— realization of state x3

KF estimate of state x3

Feedback formalized
Bode, Nyquist, Black
|

State sg
(Wiener, Be

&t | s) =E(z(t) | y'™ o))

>1967® 1996 @) KYP LMIs. Conv<2016nization)

formal methods (will) matter

e The Tesla Team -

June 30, 2016

Golden age
+ (robust control, ¢ © "= control

‘—'-*‘—‘ | ——
P———

| |
1930s-40s 1950s-60s 1970s-2000s 2004 2006

X-15 |

en.wikipedia. org/W|k|/PID controller

Autonomous vehicles, ML deep networks

Stanley the driverless car.

3000 292"- nasa.gov

12

Verifying vision algorithms

LeNet-5 (Lecun et al. 1998)

C3: f. maps 16@10x10
INPUT C1: feature maps S4: f. maps 16@5x5
6@28x28
32x32 S2: . maps

6@14x14

Full conAection ‘ Gaussian connections
Subsampling Convolutions ~ Subsampling Full connection

Convolutions

13

Verifying vision algorithms

LeNet-5 (Lecun et al. 1998)

C3: f. maps 16@10x10
INPUT C1: feature maps S4: f. maps 16@5x5
6@28x28
32x32 S2: . maps

6@14x14

\
Full conAection ‘ Gaussian connections
Subsampling Convolutions ~ Subsampling Full connection

Convolutions

Safety Verification of Deep Neural Networks*

Xiaowei Huang, Marta Kwiatkowska, Sen Wang and Min Wu

Department of Computer Science, University of Oxford

automobile to bird

automobile to frog

automobile to airplane automobile to horse

Fig. 1. Automobile images (classified correctly) and their perturbed images (classified

wrongly)

Fig. 10. Street sign images. Found an adversarial example for the left image (class

changed into bird house), but cannot find an adversarial example for the right image
for 20,000 dimensions.

13

Verifying vision algorithms

LeNet-5 (Lecun et al. 1998)

C3: f. maps 16@10x10

C1: feature maps
INPUT 6@28x28

32x32 S2: . maps

6@14x14

Convolutions

S4: f. maps 16@5x5

s

Subsampling Convolutions

05: layer pg: jayer OUTPUT
20 84 10

‘ FuIIconAection ‘ Gaussian connections
Full connection

Formal Verification of Piece-Wise Linear

Safety Verification of Deep Neural Networks™

Xiaowei Huang, Marta Kwiatkowska, Sen Wang and Min Wu

Department of Computer Science, University of Oxford

| — R

automobile to bird automobile to frog automobile to airplane automobile to horse

Fig. 1. Automobile images (classified correctly) and their perturbed images (classified
wrongly)

V
KN

Fig. 10. Street sign images. Found an adversarial example for the left image (class

changed into bird house), but cannot find an adversarial example for the right image
for 20,000 dimensions.

Feed-Forward Neural Networks

Riidiger Ehlers

P

(@) ‘3" digit from the (b) 2° digit from the (c) Image classified as
MNIST dataset MNIST dataset digit 2 with 6 = 20

(d) Image classified as
digit 2 with 6 = 30

| ¢
u

linear over-approximation
of ReLLU activation function

Variable
(identity map)

SMT encoding of an AMN

SMT.[x,y] = {y = z}

14

SMT encoding of an AMN

Variable L
(identity map) SMT, [z, y] = {y = =}

Affine B
SM —
transformation Ta(pr) |z, Y] {

a(f) = WE+b,

Fv. (y = Wv +b)
A SMT<P1 [SU, ’U]

SMT encoding of an AMN

Variable B -
(identity map) SMTz[z,y] = {y = z}

s i SMTq(p1)[2, Y] = v-(y v+b)
transformation A SMT,, 2, 0]

a(§) =WE+b,

[Fu,v,w. (w <0) = (y =u)) \
A(—(w <0) = (y =v))

MUItipleXing SMTM(<P1,<P2,<P3)[m’ y] = < A SMT('D1 :SE, ’U,]

function

— A SMT,, 2, V]

o \ A SMT, [, W])
N(‘Pl, ¥3, 903)
P2 —»f ()

| — —

SMT encoding of a “triplexer”

SRR “ Computation

Triplexer
S) = o (z) graph

SMT encoding of a “triplexer”

Y
24 RL4 Ya
: Computation
Triplexer
’ y = ¢5(x) graph
(EI(.’L'l,yl,Zl,---,$4,y4,24,’UJ1,'UJ2,TU3) ER15- \
3
/\(:1:z =T+ b; Ny; =cr+d; Nz, =e;x+ f;)
i=1
SMT _
. SMT [z, Y| = < 3 ?
encoding ve A N\ (25 <0) = (w; = ;) A (=(25 < 0) = (w; =y5))
j=1
A (4 = aqwa + bg A ys = caws + da A 24 = eqw1 + fa)
| A (24 <0) = (y=24)) A (2(22 £ 0) = (y = v4)) J

15

System analysis with AMNs in the loop

discrete-time system
with
an AMN ¢

vt =az(t+1) = p(x(t)),

CE(O) — X0,

t=0,1,2,....

16

System analysis with AMNs in the loop

discrete-time system
with T =z(t+1) =p(z(t), z0)==z t=0,1,2,...,
an AMN ¢

Global asymptotic stability: If there exists V: R" — R such that

(V(0)=0) A (x£0—=>V(z)>0) A (V(zt)=V(z)<0),..

16

System analysis with AMNSs in the loop

discrete-time system
with 2T =z(t+1) =p(z(t), z0)==z t=0,1,2,...,
an AMN ¢

Global asymptotic stability: If there exists V: R" — R such that

(V(0)=0) A (x£0—=>V(z)>0) A (V(zt)=V(z)<0),..

General idea: Pick a class of V's An example:

such that the sufficient conditions V(z) = max {a’{x + b;}

MT (e.g.
Ce.m b.e expre.ssed a.S an S (9, Yet, any AMN-representable V
with linear arithmetic as the theory). will do. too.

16

Search for Lyapunov certificates

there exists V

Want to solve: dV € V.Vx € X. Lyar(V, x) satisfying the sufficient conditions
for all x

But, cannot (directly) handle “exists for all” quantifiers.

17

Search for Lyapunov certificates

there exists V

Want to solve: dV € V.Vx € X. Lyar(V, x) satisfying the sufficient conditions
for all x

But, cannot (directly) handle “exists for all” quantifiers.

Counterexample-guided search:

algorithm: Counterexample guided Lyapunov search
initialize: k:=0, 2o € X, Xy := {zo}
repeat:
1. Search for a candidate Lyapunov function.
if E-SOLVE(X})) then:
Vi, := solution to E-SOLVE(X})
else return FALSE/UNKNOWN
2. Generate counterexample.
if F-sOLVE(V%) then:
Zk41 := solution to F-SOLVE(Vj)
else return TRUE
3. Update counterexample set.
X1 = A U{Tp41}
k:=k+1
until: stopping criterion

17

Search for Lyapunov certificates

there exists V

Want to solve: dV € V.Vx € X. Lyar(V, x) satisfying the sufficient conditions
for all x

But, cannot (directly) handle “exists for all” quantifiers.

Counterexample-guided search:

algorithm: Counterexample guided Lyapunov search Generate candidate V
initialize: k := X, Xy = -
;’Z}) ot 0, @0 € &, %o := {0} (LYAP imposed over a subset of the states)
1. Search for a candidate Lyapunov function.
if E-SOLVE(X,) then: E-SOLvE(&X,) =3V € V. /\ LYAP(V, x.)
Vi, := solution to E-SOLVE(X}) T.€X
else return FALSE/UNKNOWN -

2. Generate counterexample.

if F-sOLVE(V%) then:
Zk41 := solution to F-SOLVE(Vj)

else return TRUE

3. Update counterexample set.
X1 = A U{Tp41}
k:=k+1

until: stopping criterion

17

Search for Lyapunov certificates

there exists V

Want to solve: dV € V.Vx € X. Lyar(V, x) satisfying the sufficient conditions
for all x

But, cannot (directly) handle “exists for all” quantifiers.

Counterexample-guided search:

algorithm: Counterexample guided Lyapunov search Generate candidate V
initialize: k := X, Xy = -
if;) ot 0, @0 € &, %o := {0} (LYAP imposed over a subset of the states)
1. Search for a candidate Lyapunov function.
if E-SOLVE(X,) then: E-SOLvE(&X,) =3V € V. /\ LYAP(V, x.)
Vi, := solution to E-SOLVE(X}) T.€X
else return FALSE/UNKNOWN -

2. Generate counterexample.
if F-sOLVE(V%) then:

Tgy1 = solution to F-SOLVE(V%) F_SOLVE(V) =dr e X. _ILYAP(‘/, CE)

else return TRUE

5 Updote ?ﬂu?ef’{;imp l? set Find states at which LYAP is violated.
AP Revise the conditions for step (1)

until: stopping criterion

— S

Sanity check

A randomly generated linear system
with spectral radius of 0.75.

18

Sanity check

A randomly generated linear system
with spectral radius of 0.75.

S iterations of the algorithm
constructs a Lyapunov function.

Each iteration adds a “face” to V.

V(x) = max {a?x + b; }

10

10

18

Sanity check

A randomly generated linear system
with spectral radius of 0.75.

S iterations of the algorithm
constructs a Lyapunov function.

Each iteration adds a “face” to V.

V(x) = max {a?x + b; }

10

violating state

5 F
(violating
: /direction

10

18

Completeness of AMNSs in function approximation

approximating cos(x) with...

Completeness over continuous 1 triplexer 5 triplexers
functions is inherited from similar
completeness of neural networks.

Given a compact subset X C R"™ and a continuous function f : X — R,

there exists an affine multiplexing network ¢ : X — R that

appm:éimates f arbitrarily well on X in Lo-norm.

19

Completeness of AMNSs in function approximation

approximating cos(x) with...

Completeness over continuous 1 triplexer 5 triplexers
functions is inherited from similar
completeness of neural networks.

Given a compact subset X C R"™ and a continuous function f : X — R,

there exists an affine multiplexing network ¢ : X — R that

app-ro:éimates f arbitrarily well on X in Lo-norm.

Open question: Can the added expressivity of AMNs be utilized
for completeness over a broader family of functions?

19

Summary

Summary

 X-in-the-loop control
 Affine multiplexing networks

*Connections to system analysis, learning and
decision procedures

r—»1

20

Summary

Summary

* X-in-the-loop control X
 Affine multiplexing networks

*Connections to system analysis, learning and R
decision procedures — —

A few (potential) future steps

*Alternative means for nonlinear control synthesis and beating
fundamental limitations

*Training Lyapunov-type certificates in AMN form directly from data
(i.e., simulations)

*Continuous-time dynamics (modulo technicalities)
*Control-oriented theories in SMT
*Domain-specific languages

arbitrary cone

—
_)z itzek, (AMN: z <0 for z € R)
(Y, 2) = { y, otherwise.

LI —»

Difficulties

At its heart, involves at least (worst-case) an NP-
complete computation

Model-based (IQCs, robust control)

Some good tools exist (Z3, yices), but these
require expert knowledge to use

Writing a new Python toolbox (AMNET) as a
modeling and query layer

21

Difficulties

At its heart, involves at least (worst-case) an NP-
complete computation

Model-based (IQCs, robust control)

Some good tools exist (Z3, yices), but these
require expert knowledge to use

Writing a new Python toolbox (AMNET) as a
modeling and query layer

= NN(2)

Ax + B

Ju

21

Difficulties

- At its heart, involves at least (worst-case) an NP-
complete computation

« Model-based (IQCs, robust control)

- Some good tools exist (Z3, yices), but these
require expert knowledge to use

- Writing a new Python toolbox (AMNET) as a
modeling and query layer

https://github.com/ipapusha/amnet
AMNET: Affine Multiplexing Network Toolbox

AMNET is a Python toolbox that assists in building certain kinds of neural networks, and formally verifying their behavior in-the-
loop (under development).

I 1. Multiplexing nonlinearities
tuﬂh;l_ max2(xr) = pulai(x), az(x), az(x))
if (—xy + 2 <0) then x| else x5
(a3 . O3 . Q2
1in0[2->1) | [lin2[2->1 1inl[2->1 2. Affine transformations
ay(x): (,f.r as(x) : (.’_{ﬂ.r az(x) = —x1 + X2
m N
| vard[a—>2] 3. Input variables

2
re R

Y am z
——O O—Pp [—» NN(z)
|
ENV Uu
1 " oXe, L Ax + Bu

import numpy as np
from amnet import Variable, Linear, Mu

a two-dimensional input variable
x = Variable(2, name='x"')

choose components
al = Linear(np.array([[1, @]1]), x)
a2 = Linear(np.array([[0, 1]1]), x)

find difference
a3 = Linear(np.array([[-1, 11]1), x)

if a3 <= 0, returns al; otherwise a2
phimax = Mu(al, a2, a3)

equivalently, we can also write
phimax = amnet.atoms.max_all(x)

print phimax
print phimax.eval([1, -2]) # returns: 1

21

