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µ : Rn ⇥ Rn ⇥ R ! Rn

µ(x, y, z) =

⇢
x, if z  0

y, otherwise
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Why care about AMNs?

6

AMNs are expressive.

AMNs can be trained through a modification of the  
back-propagation algorithm  
(i.e. weak derivatives of µ can be efficiently computed).

Deep multilayer feedforward networks with  
piecewise-affine nonlinearities are a 
special case.

Can automatically translate them 
into AMNs.

error
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Sounds like a rehash of neural networks?

7

They are similar but…

AMNs can express discontinuous functions  
whereas classical (continuous) neural networks cannot. 

a switched system its AMN representation

AMNs can be encoded as satisfiability modulo theory (SMT) instances.
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Fine, but does the difference matter?

8

NNs AMNs

piecewise-affine 
nonlinearities

The answer depends on what you want to do.

Learning view:  
“Can train so much more”

Verification view: 
“Can do computational analysis”
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Fig. 1. Linear control scheme with linear plant P(s) and controller C(s).

a fundamental tradeoff for linear plants with a real unstable
pole, which, given a certain rise-time specification, will exhibit a
minimal amount of overshoot when controlled by any linear con-
troller (Seron et al., 1997). Using a so-called phase-based variable-
gain controller (Armstrong, Guitierrez, Wade, & Joseph, 2006; Xu,
Hollerbach, &Ma, 1995), we show that this fundamental limitation
can be overcome. In particular, we show that an overshoot specifi-
cation can be attained that is not attainable by any linear feedback
controller.

The remainder of this note is organized as follows. In Section 2,
we briefly revisit a fundamental time-domain limitation for lin-
ear plants with an unstable real pole. In Section 3, we present the
phase-based variable-gain control strategy and show, using a sim-
ulation example, that a time-domain specification can be met us-
ing this nonlinear control strategy that cannot bemet by any linear
feedback controller. Conclusions are presented in Section 4.

2. A fundamental time-domain limitation for linear systems

Consider the linear feedback configuration in Fig. 1, which
consists of a linear time-invariant (LTI) single-input-single-output
(SISO) plant P(s), s 2 C, linear feedback controller C(s), reference
r , output y, tracking error e := r �y and control action u. It is well-
known that there exist fundamental performance limitations in the
design of linear feedback controllers C(s) for these linear SISO LTI
plants P(s), see e.g. Freudenberg et al. (2000), Middleton (1991)
and Seron et al. (1997). The term fundamental relates to the fact that
the performance limitations are independent of the design choices
for the linear feedback controller C(s).

In this note, we focus on a fundamental time-domain limitation
for plants P(s) which have an unstable pole at s = p > 0. If
the closed-loop system in Fig. 1 is subject to a unit step-reference
r(t) = 1, for t 2 R�0 (r(t) = 0, t < 0), a certain fundamental
limitation exists between the rise-time and amount of overshoot
of the closed-loop system. In order to make the latter statement
mathematically more precise, consider the following definitions of
rise-time and amount of overshoot.

Definition 1 (Seron et al., 1997). The rise-time of the closed-loop
system is defined as:

tr := sup
�

n

� : y(t)  t
�
for all t 2 [0, �]

o

. (1)

Definition 2 (Seron et al., 1997). The overshoot yos of the closed-
loop system is defined as the maximum value by which the output
y(t) exceeds the final set-point value r = 1:

yos := sup
t�0

(�e(t)). (2)

A graphical interpretation of the definition of rise-time and
overshoot is given in Fig. 2. In words, this means that the rise time
tr is defined as the largest value for which the response y(t) is still
below the line t/tr , for all t  tr .

Now, a fundamental time-domain limitation can be formulated
in the result below.

Corollary 3 (Seron et al., 1997). Suppose that P(s) in Fig. 1 has a real
pole at s = p > 0 in the open right-half-plane. If the closed-loop
system is stabilized by any linear time-invariant controller C(s), then

Fig. 2. Definition of rise-time tr according to (1) and overshoot yos according to (2).

Fig. 3. Phase-based variable-gain control scheme with variable-gain element
'(e, ė).

its step-response y(t)must exhibit overshoot, and satisfy the following
inequality:

yos � (ptr � 1)eptr + 1
ptr

� ptr
2

. (3)

Proof. The proof can be found in Seron et al. (1997).

Note that both the lower-bounds for the overshoot yos in (3) are
monotonic in the rise time tr . Therefore, Corollary 3 expresses the
fact that if the closed-loop system is ‘slow’, i.e., it has a large rise
time tr , the step response will present a large amount of overshoot
if there are open-loop unstable real poles. In practice, it is reason-
able to assume that, a certain lower-bound for the rise-time of a
closed-loop system with unstable real open-loop poles may exist,
for example due to physical actuator constraints or bandwidth lim-
itations in the system. This lower-bound for the rise-time results
(via (3)) in an explicit lower bound on the amount of overshoot
that the systemwill exhibitwhenusing a linear feedback controller
C(s), no matter how the controller C(s) is designed/tuned.

In Section 3,we present a type of nonlinear controllerwhich can
overcome this fundamental time-domain performance limitation.

3. A nonlinear controller overcoming a fundamental time-

domain limitation

3.1. Phase-based variable-gain control

Consider the nonlinear control strategy as shown in Fig. 3,
which represents a so-called variable-gain control (VGC) scheme.
The term variable-gain controller is used since the controller con-
figuration allows the use of a variable amount of controller gain
through the function '(e, ė). Here, we will focus on a phase-based
variable-gain controller, which applies additional gain based on in-
formation on the error e and time-derivative of the error ė, see
e.g. Armstrong et al. (2006) and Xu et al. (1995), as opposed to
magnitude-based variable-gain control, which modulates the gain
based only on the magnitude of the error e, see Heertjes and
Leenknegt (2010), Hunnekens et al. (2015) and van deWouw et al.
(2008).
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Note that both the lower-bounds for the overshoot yos in (3) are
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fact that if the closed-loop system is ‘slow’, i.e., it has a large rise
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3. A nonlinear controller overcoming a fundamental time-
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3.1. Phase-based variable-gain control

Consider the nonlinear control strategy as shown in Fig. 3,
which represents a so-called variable-gain control (VGC) scheme.
The term variable-gain controller is used since the controller con-
figuration allows the use of a variable amount of controller gain
through the function '(e, ė). Here, we will focus on a phase-based
variable-gain controller, which applies additional gain based on in-
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14 1. A Chronicle of System Design Limitations

Finally, the overshoot is the maximum value by which the output exceeds
its final set point value, i.e.,

yos ! sup
t

{−e(t)} ;

and the undershoot is the maximum negative peak of the system’s output,
i.e.,

yus ! sup
t

{−y(t)} .

Figure 1.3 shows a typical step response and illustrates these quantities.

2ϵ

0

y(t)

1

yos

yus

tr
ts

t

FIGURE 1.3. Time domain specifications.

Corollary 1.3.5 (Overshoot and real ORHP poles). A stable unity feed-
back system with a real ORHP open-loop pole, say at s = p, must have
overshoot in its step response. Moreover, if tr is the rise time defined by
(1.12), then

yos ≥ (ptr − 1)eptr + 1

ptr

≥ ptr

2
.

(1.14)

Proof. The existence of overshoot follows immediately from Theo-
rem 1.3.3, since e(t) cannot have a single sign unless it is zero for all t.
From the definition of rise time in (1.12) we have that y(t) ≤ t/tr for
t ≤ tr, i.e., e(t) ≥ 1 − t/tr. Using this, we can write from the integral
equality (1.8)

−

∫∞

tr

e−pte(t)dt ≥
∫tr

0

e−pt

(

1 −
t

tr

)

dt . (1.15)

Seron, et al. (1997)
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Fig. 6. Amount of overshoot of the phase-based VGC as a function of the additional
gain ↵, with plant pole p = 1 (upper plot) and plant pole p = 2 (lower plot).

In the lower-plot of Fig. 5 the control action u is shown. Note
that the change in control action after t = 0.28 s is exactly what
limits the amount of overshoot for the phase-basedVGC.Moreover,
note that the control action u is smooth (no discontinuities) due to
the low-pass filter that is contained in C(s) in (6). The oscillatory
behavior in the control signal for the phase-based VGC is due to
the fact that ė changes sign multiple times in the simulation, see
the upper-plot in Fig. 5.

In order to study the effect of the additional gain ↵ in more
detail, consider the simulation results in the upper plot of Fig. 6,
which shows the amount of overshoot of the closed-loop system as
a function of the additional gain↵ in'(e, ė) in (4), for the plantwith
pole at p = 1. Stable step-responses are obtained for all↵ 2 [0, 27]
and, for all ↵ 2 [2.1, 27], an overshoot below the fundamental
lower-bound (7) is achieved.

It is interesting to note that up to ↵ = 27 a stable step-response
is obtained using the phase-based VGC, whereas if this gain would
be applied continuously (i.e. using ↵C(s) as a linear controller) an
unstable linear closed-loop system would result, since the gain
margin of the systemwith linear controller canbedetermined to be
9.9, see Fig. 6. Therefore, in a formal stability analysis of the closed-
loop system, the variable-gain element '(e, ė) should explicitly be
accounted for, as discussed in Armstrong et al. (2006).

In order to study the robustness of the performance gain in the
presence of plant uncertainties, consider the result in the lower
plot of Fig. 6, where only the plant pole has been shifted to p = 2.
Because the plant P(s) is different, the amount of overshoot and the
fundamental lower-bound is different. However, the qualitative
closed-loop behavior is the same (with an overshoot not attainable
by any linear controller), which indicates that there is some
robustness to model uncertainties.

As a last simulation experiment, we consider the situation in
which an input plant disturbance acts on the plant. A white noise
disturbance has been added to the plant input u(s), the results
are depicted in Fig. 7. The effect of the input disturbance is visible
from the response y(t), but still the phase-based variable controller

Fig. 7. Step-response of the closed-loop system (top) using linear control and using
phase-based variable-gain control (with ↵ = 10) and the corresponding control
action u (bottom) under the influence of plant input noise.

can achieve an overshoot specification not attainable by any linear
controller. From the control action u we see that the phase-based
variable-gain controller is more sensitive to the noise, because it
reacts to the changes in the (e, ė)-quadrants, see Fig. 4. If in a
practical situation this increased sensitivity is problematic, it can
be counteracted by using a low-pass filter in the controller C(s),
but likely at the expense of some loss in performance.

4. Conclusions

Linear control systems are subject to certain fundamental
performance-tradeoffs. Different types of variable-gain control
strategies have been studied and used in practical/industrial
applications in the last decades (Armstrong et al., 2006;Hunnekens
et al., 2015; Lin et al., 1998; Su, Sun, & Duan, 2005; van de Wouw
et al., 2008; Zheng et al., 2005) in order to improve the performance
compared to linear systems. Still, to the best knowledge of the
authors, this note gives the first explicit example of a variable-
gain controller achieving a performance specification that is not
achievable by any linear controller. In particular, we have shown
that phase-based variable-gain control can achieve an overshoot
performance specification that cannot be achieved by any linear
controller.

The authors hope that the results in this note, in addition to the
successful applications of nonlinear and variable-gain controllers
in literature, will inspire others to research and apply nonlinear
controllers for linear systems in order to improve performance
beyond the reach of linear control.
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−

∫∞

tr

e−pte(t)dt ≥
∫tr

0

e−pt

(

1 −
t

tr

)

dt . (1.15)

Seron, et al. (1997)
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Fig. 1. Linear control scheme with linear plant P(s) and controller C(s).

a fundamental tradeoff for linear plants with a real unstable
pole, which, given a certain rise-time specification, will exhibit a
minimal amount of overshoot when controlled by any linear con-
troller (Seron et al., 1997). Using a so-called phase-based variable-
gain controller (Armstrong, Guitierrez, Wade, & Joseph, 2006; Xu,
Hollerbach, &Ma, 1995), we show that this fundamental limitation
can be overcome. In particular, we show that an overshoot specifi-
cation can be attained that is not attainable by any linear feedback
controller.

The remainder of this note is organized as follows. In Section 2,
we briefly revisit a fundamental time-domain limitation for lin-
ear plants with an unstable real pole. In Section 3, we present the
phase-based variable-gain control strategy and show, using a sim-
ulation example, that a time-domain specification can be met us-
ing this nonlinear control strategy that cannot bemet by any linear
feedback controller. Conclusions are presented in Section 4.

2. A fundamental time-domain limitation for linear systems

Consider the linear feedback configuration in Fig. 1, which
consists of a linear time-invariant (LTI) single-input-single-output
(SISO) plant P(s), s 2 C, linear feedback controller C(s), reference
r , output y, tracking error e := r �y and control action u. It is well-
known that there exist fundamental performance limitations in the
design of linear feedback controllers C(s) for these linear SISO LTI
plants P(s), see e.g. Freudenberg et al. (2000), Middleton (1991)
and Seron et al. (1997). The term fundamental relates to the fact that
the performance limitations are independent of the design choices
for the linear feedback controller C(s).

In this note, we focus on a fundamental time-domain limitation
for plants P(s) which have an unstable pole at s = p > 0. If
the closed-loop system in Fig. 1 is subject to a unit step-reference
r(t) = 1, for t 2 R�0 (r(t) = 0, t < 0), a certain fundamental
limitation exists between the rise-time and amount of overshoot
of the closed-loop system. In order to make the latter statement
mathematically more precise, consider the following definitions of
rise-time and amount of overshoot.

Definition 1 (Seron et al., 1997). The rise-time of the closed-loop
system is defined as:

tr := sup
�

n

� : y(t)  t
�
for all t 2 [0, �]

o

. (1)

Definition 2 (Seron et al., 1997). The overshoot yos of the closed-
loop system is defined as the maximum value by which the output
y(t) exceeds the final set-point value r = 1:

yos := sup
t�0

(�e(t)). (2)

A graphical interpretation of the definition of rise-time and
overshoot is given in Fig. 2. In words, this means that the rise time
tr is defined as the largest value for which the response y(t) is still
below the line t/tr , for all t  tr .

Now, a fundamental time-domain limitation can be formulated
in the result below.

Corollary 3 (Seron et al., 1997). Suppose that P(s) in Fig. 1 has a real
pole at s = p > 0 in the open right-half-plane. If the closed-loop
system is stabilized by any linear time-invariant controller C(s), then

Fig. 2. Definition of rise-time tr according to (1) and overshoot yos according to (2).

Fig. 3. Phase-based variable-gain control scheme with variable-gain element
'(e, ė).

its step-response y(t)must exhibit overshoot, and satisfy the following
inequality:

yos � (ptr � 1)eptr + 1
ptr

� ptr
2

. (3)

Proof. The proof can be found in Seron et al. (1997).

Note that both the lower-bounds for the overshoot yos in (3) are
monotonic in the rise time tr . Therefore, Corollary 3 expresses the
fact that if the closed-loop system is ‘slow’, i.e., it has a large rise
time tr , the step response will present a large amount of overshoot
if there are open-loop unstable real poles. In practice, it is reason-
able to assume that, a certain lower-bound for the rise-time of a
closed-loop system with unstable real open-loop poles may exist,
for example due to physical actuator constraints or bandwidth lim-
itations in the system. This lower-bound for the rise-time results
(via (3)) in an explicit lower bound on the amount of overshoot
that the systemwill exhibitwhenusing a linear feedback controller
C(s), no matter how the controller C(s) is designed/tuned.

In Section 3,we present a type of nonlinear controllerwhich can
overcome this fundamental time-domain performance limitation.

3. A nonlinear controller overcoming a fundamental time-

domain limitation

3.1. Phase-based variable-gain control

Consider the nonlinear control strategy as shown in Fig. 3,
which represents a so-called variable-gain control (VGC) scheme.
The term variable-gain controller is used since the controller con-
figuration allows the use of a variable amount of controller gain
through the function '(e, ė). Here, we will focus on a phase-based
variable-gain controller, which applies additional gain based on in-
formation on the error e and time-derivative of the error ė, see
e.g. Armstrong et al. (2006) and Xu et al. (1995), as opposed to
magnitude-based variable-gain control, which modulates the gain
based only on the magnitude of the error e, see Heertjes and
Leenknegt (2010), Hunnekens et al. (2015) and van deWouw et al.
(2008).
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Fig. 6. Amount of overshoot of the phase-based VGC as a function of the additional
gain ↵, with plant pole p = 1 (upper plot) and plant pole p = 2 (lower plot).

In the lower-plot of Fig. 5 the control action u is shown. Note
that the change in control action after t = 0.28 s is exactly what
limits the amount of overshoot for the phase-basedVGC.Moreover,
note that the control action u is smooth (no discontinuities) due to
the low-pass filter that is contained in C(s) in (6). The oscillatory
behavior in the control signal for the phase-based VGC is due to
the fact that ė changes sign multiple times in the simulation, see
the upper-plot in Fig. 5.

In order to study the effect of the additional gain ↵ in more
detail, consider the simulation results in the upper plot of Fig. 6,
which shows the amount of overshoot of the closed-loop system as
a function of the additional gain↵ in'(e, ė) in (4), for the plantwith
pole at p = 1. Stable step-responses are obtained for all↵ 2 [0, 27]
and, for all ↵ 2 [2.1, 27], an overshoot below the fundamental
lower-bound (7) is achieved.

It is interesting to note that up to ↵ = 27 a stable step-response
is obtained using the phase-based VGC, whereas if this gain would
be applied continuously (i.e. using ↵C(s) as a linear controller) an
unstable linear closed-loop system would result, since the gain
margin of the systemwith linear controller canbedetermined to be
9.9, see Fig. 6. Therefore, in a formal stability analysis of the closed-
loop system, the variable-gain element '(e, ė) should explicitly be
accounted for, as discussed in Armstrong et al. (2006).

In order to study the robustness of the performance gain in the
presence of plant uncertainties, consider the result in the lower
plot of Fig. 6, where only the plant pole has been shifted to p = 2.
Because the plant P(s) is different, the amount of overshoot and the
fundamental lower-bound is different. However, the qualitative
closed-loop behavior is the same (with an overshoot not attainable
by any linear controller), which indicates that there is some
robustness to model uncertainties.

As a last simulation experiment, we consider the situation in
which an input plant disturbance acts on the plant. A white noise
disturbance has been added to the plant input u(s), the results
are depicted in Fig. 7. The effect of the input disturbance is visible
from the response y(t), but still the phase-based variable controller

Fig. 7. Step-response of the closed-loop system (top) using linear control and using
phase-based variable-gain control (with ↵ = 10) and the corresponding control
action u (bottom) under the influence of plant input noise.

can achieve an overshoot specification not attainable by any linear
controller. From the control action u we see that the phase-based
variable-gain controller is more sensitive to the noise, because it
reacts to the changes in the (e, ė)-quadrants, see Fig. 4. If in a
practical situation this increased sensitivity is problematic, it can
be counteracted by using a low-pass filter in the controller C(s),
but likely at the expense of some loss in performance.

4. Conclusions

Linear control systems are subject to certain fundamental
performance-tradeoffs. Different types of variable-gain control
strategies have been studied and used in practical/industrial
applications in the last decades (Armstrong et al., 2006;Hunnekens
et al., 2015; Lin et al., 1998; Su, Sun, & Duan, 2005; van de Wouw
et al., 2008; Zheng et al., 2005) in order to improve the performance
compared to linear systems. Still, to the best knowledge of the
authors, this note gives the first explicit example of a variable-
gain controller achieving a performance specification that is not
achievable by any linear controller. In particular, we have shown
that phase-based variable-gain control can achieve an overshoot
performance specification that cannot be achieved by any linear
controller.

The authors hope that the results in this note, in addition to the
successful applications of nonlinear and variable-gain controllers
in literature, will inspire others to research and apply nonlinear
controllers for linear systems in order to improve performance
beyond the reach of linear control.

References

Armstrong, B. S. R., Guitierrez, J. A., Wade, B. A., & Joseph, R. (2006). Stability
of phase-based gain modulation with designer-chosen switch functions.
International Journal of Robotics Research, 25, 781–796.

Beker, O., Hollot, C. V., & Chait, Y. Y. (2001). Plant with integrator: An example
of reset control overcoming limitations of linear feedback. IEEE Transactions of
Automatic Control, 46(11).

Chen, B. M., Lee, T. H., Peng, K., & Venkataramanan, V. (2003). Composite nonlinear
feedback control for linear systems with input saturation: Theory and an
application. IEEE Transactions of Automatic Control, 48(3), 427–439.

'vgc
(e, ė) =

⇢
↵e, if eė > 0

0, otherwise

Phase-based,  
variable-gain nonlinearity

The nonlinearity as an AMN (with 4 multiplexing nonlinearities)

'vgc(e, ė) = '_ ('_(0,↵e,�e,�ė),↵e, e, ė)

'

_(x, y, z1, z2) = µ(x, µ(x, y, z1), z2)

14 1. A Chronicle of System Design Limitations

Finally, the overshoot is the maximum value by which the output exceeds
its final set point value, i.e.,

yos ! sup
t

{−e(t)} ;

and the undershoot is the maximum negative peak of the system’s output,
i.e.,

yus ! sup
t

{−y(t)} .

Figure 1.3 shows a typical step response and illustrates these quantities.

2ϵ

0

y(t)

1

yos

yus

tr
ts

t

FIGURE 1.3. Time domain specifications.

Corollary 1.3.5 (Overshoot and real ORHP poles). A stable unity feed-
back system with a real ORHP open-loop pole, say at s = p, must have
overshoot in its step response. Moreover, if tr is the rise time defined by
(1.12), then

yos ≥ (ptr − 1)eptr + 1

ptr

≥ ptr

2
.

(1.14)

Proof. The existence of overshoot follows immediately from Theo-
rem 1.3.3, since e(t) cannot have a single sign unless it is zero for all t.
From the definition of rise time in (1.12) we have that y(t) ≤ t/tr for
t ≤ tr, i.e., e(t) ≥ 1 − t/tr. Using this, we can write from the integral
equality (1.8)

−

∫∞

tr

e−pte(t)dt ≥
∫tr

0

e−pt

(

1 −
t

tr

)

dt . (1.15)

Seron, et al. (1997)
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1 Setup

A Kalman filter is a special kind of recursive estimation filter for a Markov process, where the
state transition and measurement relations are linear with added Gaussian noise. More concretely,
let x(t) ∈ Rn be the state and y(t) ∈ Rm be the measurement vectors for a (discrete-time) linear
dynamical system that evolves according to

x(t + 1) = Ax(t) + w(t),

y(t) = Cx(t) + v(t), t = 0, 1, . . . ,

where A ∈ Rn×n and C ∈ Rm×n are the state transition and measurement matrices. For each
t = 0, 1, . . . the noise variables are i.i.d. Gaussian with zero mean and known covariance, i.e.,

w(t) ∼ N (0, Σw), v(t) ∼ N (0, Σv),

and independent of each other. The initial state is also random Gaussian with x(0) ∼ N (µ0, Σ0),
and independent of w(t), v(t). The Kalman filter is a dynamic programming algorithm that
(causally) finds a maximum likelihood estimate x̂(T ) of the state at some time T given the previous
measurements y(0), . . . , y(T ).

2 Kalman Filter Algorithm

It can be shown that the maximum likelihood estimate of the state at time t given all the measure-
ments up to time s, denoted x̂(t | s), is Gaussian. We define the conditional mean and covariance,

x̂(t | s) = E (x(t) | y(0), . . . , y(s)) ,

Σ̂t|s = cov (x(t) | y(0), . . . , y(s)) .

The Kalman recursion to find the maximum likelihood x̂(T | T ) is shown below.

Algorithm: Kalman Filter

Initialize: x̂(0 | −1) = µ0 and Σ̂0|−1 = Σ0.

For t = 0, 1, . . . , T :
1. Measurement update:

x̂(t | t) = x̂(t | t − 1) + Σ̂t|t−1C
T (CΣ̂t|t−1C

T + Σ̂v)−1 (y(t) − Cx̂(t | t − 1))

Σ̂t|t = Σ̂t|t−1 − Σ̂t|t−1C
T (CΣ̂t|t−1C

T + Σ̂v)−1CΣ̂t|t−1

If t ̸= T :
2. Time update:

x̂(t + 1 | t) = Ax̂(t | t)
Σ̂t+1|t = AΣ̂t|tA

T + Σw

1
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Safety Verification of Deep Neural Networks?

Xiaowei Huang, Marta Kwiatkowska, Sen Wang and Min Wu

Department of Computer Science, University of Oxford

Abstract. Deep neural networks have achieved impressive experimental results
in image classification, but can surprisingly be unstable with respect to adversar-
ial perturbations, that is, minimal changes to the input image that cause the net-
work to misclassify it. With potential applications including perception modules
and end-to-end controllers for self-driving cars, this raises concerns about their
safety. We develop a novel automated verification framework for feed-forward
multi-layer neural networks based on Satisfiability Modulo Theory (SMT). We
focus on safety of image classification decisions with respect to image manipu-
lations, such as scratches or changes to camera angle or lighting conditions that
would result in the same class being assigned by a human, and define safety
for an individual decision in terms of invariance of the classification within a
small neighbourhood of the original image. We enable exhaustive search of the
region by employing discretisation, and propagate the analysis layer by layer. Our
method works directly with the network code and, in contrast to existing meth-
ods, can guarantee that adversarial examples, if they exist, are found for the given
region and family of manipulations. If found, adversarial examples can be shown
to human testers and/or used to fine-tune the network. We implement the tech-
niques using Z3 and evaluate them on state-of-the-art networks, including regu-
larised and deep learning networks. We also compare against existing techniques
to search for adversarial examples and estimate network robustness.

1 Introduction

Deep neural networks have achieved impressive experimental results in image classifi-
cation, matching the cognitive ability of humans [23] in complex tasks with thousands
of classes. Many applications are envisaged, including their use as perception modules
and end-to-end controllers for self-driving cars [15]. Let Rn be a vector space of images
(points) that we wish to classify and assume that f : Rn ! C, where C is a (finite) set of
class labels, models the human perception capability, then a neural network classifier is
a function f̂ (x) which approximates f (x) from M training examples {(xi, ci)}i=1,..,M . For
example, a perception module of a self-driving car may input an image from a camera
and must correctly classify the type of object in its view, irrespective of aspects such
as the angle of its vision and image imperfections. Therefore, though they clearly in-
clude imperfections, all four pairs of images in Figure 1 should arguably be classified
as automobiles, since they appear so to a human eye.

? This work is supported by the EPSRC Programme Grant on Mobile Autonomy
(EP/M019918/1). Part of this work was done while MK was visiting the Simons Institute for
the Theory of Computing.
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Classifiers employed in vision tasks are typically multi-layer networks, which prop-
agate the input image through a series of linear and non-linear operators. They are
high-dimensional, often with millions of dimensions, non-linear and potentially dis-
continuous: even a small network, such as that trained to classify hand-written images
of digits 0-9, has over 60,000 real-valued parameters and 21,632 neurons (dimensions)
in its first layer. At the same time, the networks are trained on a finite data set and
expected to generalise to previously unseen images. To increase the probability of cor-
rectly classifying such an image, regularisation techniques such as dropout are typically
used, which improves the smoothness of the classifiers, in the sense that images that are
close (within ✏ distance) to a training point are assigned the same class label.

automobile to bird automobile to frog automobile to airplane automobile to horse

Fig. 1. Automobile images (classified correctly) and their perturbed images (classified
wrongly)

Unfortunately, it has been observed in [13,36] that deep neural networks, includ-
ing highly trained and smooth networks optimised for vision tasks, are unstable with
respect to so called adversarial perturbations. Such adversarial perturbations are (min-
imal) changes to the input image, often imperceptible to the human eye, that cause the
network to misclassify the image. Examples include not only artificially generated ran-
dom perturbations, but also (more worryingly) modifications of camera images [22] that
correspond to resizing, cropping or change in lighting conditions. They can be devised
without access to the training set [29] and are transferable [19], in the sense that an ex-
ample misclassified by one network is also misclassified by a network with a di↵erent
architecture, even if it is trained on di↵erent data. Figure 1 gives adversarial pertur-
bations of automobile images that are misclassified as a bird, frog, airplane or horse
by a highly trained state-of-the-art network. This obviously raises potential safety con-
cerns for applications such as autonomous driving and calls for automated verification
techniques that can verify the correctness of their decisions.

Safety of AI systems is receiving increasing attention, to mention [33,10], in view
of their potential to cause harm in safety-critical situations such as autonomous driving.
Typically, decision making in such systems is either solely based on machine learning,
through end-to-end controllers, or involves some combination of logic-based reasoning
and machine learning components, where an image classifier produces a classification,
say speed limit or a stop sign, that serves as input to a controller. A recent trend towards
“explainable AI” has led to approaches that learn not only how to assign the classifica-
tion labels, but also additional explanations of the model, which can take the form of
a justification explanation (why this decision has been reached, for example identify-
ing the features that supported the decision) [17,31]. In all these cases, the safety of a
decision can be reduced to ensuring the correct behaviour of a machine learning com-

2014 competition, downloaded from [7]. The trained network has 138,357,544 real-
valued parameters and includes convolutional layers, ReLU layers, zero-padding lay-
ers, dropout layers, max-pooling layers, fully-connected layers, and a softmax layer.
The experimental parameters are the same as for the previous two experiments, except
that we work with 20,000 dimensions.

Several additional pairs of original and perturbed images are included in Figure 14
in Appendix of [20]. In Figure 10 we also give two examples of street sign images. The
image on the left is reported unsafe for the second layer with 6346 dimensional changes
(0.2% of the 3,211,264 dimensions of layer L2). The one on the right is reported safe
for 20,000 dimensional changes of layer L2. It appears that more complex manipula-
tions, involving more dimensions (perceptrons), are needed in this case to cause a class
change.

Fig. 10. Street sign images. Found an adversarial example for the left image (class
changed into bird house), but cannot find an adversarial example for the right image
for 20,000 dimensions.

5.1 The German Tra�c Sign Recognition Benchmark (GTSRB)

We evaluate DLV on the GTSRB dataset (by resizing images into size 32*32), which
has 43 classes. Figure 11 presents the results for the multi-path search. The first case
(approx. 20 minutes to manipulate) is a stop sign (confidence 1.0) changed into a speed
limit of 30 miles, with an L1 distance of 0.045 and L2 distance of 0.19. The confidence
of the manipulated image is 0.79. The second, easy, case (seconds to manipulate) is a
speed limit of 80 miles (confidence 0.999964) changed into a speed limit of 30 miles,
with an L1 distance of 0.004 and L2 distance of 0.06. The confidence of the manipulated
image is 0.99 (a very high confidence of misclassification). Also, a “go right” sign can
be easily manipulated into a sign classified as “go straight”.

Figure 16 in [20] presents additional adversarial examples obtained when selecting
single-path search.

6 Comparison

We compare our approach with two existing approaches for finding adversarial exam-
ples, i.e., fast gradient sign method (FGSM) [36] and Jacobian saliency map algorithm
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a function f̂ (x) which approximates f (x) from M training examples {(xi, ci)}i=1,..,M . For
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and must correctly classify the type of object in its view, irrespective of aspects such
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agate the input image through a series of linear and non-linear operators. They are
high-dimensional, often with millions of dimensions, non-linear and potentially dis-
continuous: even a small network, such as that trained to classify hand-written images
of digits 0-9, has over 60,000 real-valued parameters and 21,632 neurons (dimensions)
in its first layer. At the same time, the networks are trained on a finite data set and
expected to generalise to previously unseen images. To increase the probability of cor-
rectly classifying such an image, regularisation techniques such as dropout are typically
used, which improves the smoothness of the classifiers, in the sense that images that are
close (within ✏ distance) to a training point are assigned the same class label.
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Unfortunately, it has been observed in [13,36] that deep neural networks, includ-
ing highly trained and smooth networks optimised for vision tasks, are unstable with
respect to so called adversarial perturbations. Such adversarial perturbations are (min-
imal) changes to the input image, often imperceptible to the human eye, that cause the
network to misclassify the image. Examples include not only artificially generated ran-
dom perturbations, but also (more worryingly) modifications of camera images [22] that
correspond to resizing, cropping or change in lighting conditions. They can be devised
without access to the training set [29] and are transferable [19], in the sense that an ex-
ample misclassified by one network is also misclassified by a network with a di↵erent
architecture, even if it is trained on di↵erent data. Figure 1 gives adversarial pertur-
bations of automobile images that are misclassified as a bird, frog, airplane or horse
by a highly trained state-of-the-art network. This obviously raises potential safety con-
cerns for applications such as autonomous driving and calls for automated verification
techniques that can verify the correctness of their decisions.

Safety of AI systems is receiving increasing attention, to mention [33,10], in view
of their potential to cause harm in safety-critical situations such as autonomous driving.
Typically, decision making in such systems is either solely based on machine learning,
through end-to-end controllers, or involves some combination of logic-based reasoning
and machine learning components, where an image classifier produces a classification,
say speed limit or a stop sign, that serves as input to a controller. A recent trend towards
“explainable AI” has led to approaches that learn not only how to assign the classifica-
tion labels, but also additional explanations of the model, which can take the form of
a justification explanation (why this decision has been reached, for example identify-
ing the features that supported the decision) [17,31]. In all these cases, the safety of a
decision can be reduced to ensuring the correct behaviour of a machine learning com-

2014 competition, downloaded from [7]. The trained network has 138,357,544 real-
valued parameters and includes convolutional layers, ReLU layers, zero-padding lay-
ers, dropout layers, max-pooling layers, fully-connected layers, and a softmax layer.
The experimental parameters are the same as for the previous two experiments, except
that we work with 20,000 dimensions.

Several additional pairs of original and perturbed images are included in Figure 14
in Appendix of [20]. In Figure 10 we also give two examples of street sign images. The
image on the left is reported unsafe for the second layer with 6346 dimensional changes
(0.2% of the 3,211,264 dimensions of layer L2). The one on the right is reported safe
for 20,000 dimensional changes of layer L2. It appears that more complex manipula-
tions, involving more dimensions (perceptrons), are needed in this case to cause a class
change.

Fig. 10. Street sign images. Found an adversarial example for the left image (class
changed into bird house), but cannot find an adversarial example for the right image
for 20,000 dimensions.

5.1 The German Tra�c Sign Recognition Benchmark (GTSRB)

We evaluate DLV on the GTSRB dataset (by resizing images into size 32*32), which
has 43 classes. Figure 11 presents the results for the multi-path search. The first case
(approx. 20 minutes to manipulate) is a stop sign (confidence 1.0) changed into a speed
limit of 30 miles, with an L1 distance of 0.045 and L2 distance of 0.19. The confidence
of the manipulated image is 0.79. The second, easy, case (seconds to manipulate) is a
speed limit of 80 miles (confidence 0.999964) changed into a speed limit of 30 miles,
with an L1 distance of 0.004 and L2 distance of 0.06. The confidence of the manipulated
image is 0.99 (a very high confidence of misclassification). Also, a “go right” sign can
be easily manipulated into a sign classified as “go straight”.

Figure 16 in [20] presents additional adversarial examples obtained when selecting
single-path search.

6 Comparison

We compare our approach with two existing approaches for finding adversarial exam-
ples, i.e., fast gradient sign method (FGSM) [36] and Jacobian saliency map algorithm

Formal Verification of Piece-Wise Linear
Feed-Forward Neural Networks

Rüdiger Ehlers
University of Bremen and DFKI GmbH, Bremen, Germany

We present an approach for the verification of feed-forward neural networks in which
all nodes have a piece-wise linear activation function. Such networks are often used in
deep learning and have been shown to be hard to verify for modern satisfiability modulo
theory (SMT) and integer linear programming (ILP) solvers.

The starting point of our approach is the addition of a global linear approximation of the
overall network behavior to the verification problem that helps with SMT-like reasoning
over the network behavior. We present a specialized verification algorithm that employs
this approximation in a search process in which it infers additional node phases for the
non-linear nodes in the network from partial node phase assignments, similar to unit
propagation in classical SAT solving. We also show how to infer additional conflict
clauses and safe node fixtures from the results of the analysis steps performed during
the search. The resulting approach is evaluated on collision avoidance and handwritten
digit recognition case studies.

1 Introduction

Many tasks in computing are prohibitively di�cult to formalize and thus hard to get right. A
classical example is the recognition of digits from images. Formalizing what exactly distinguishes
the digit 2 from a 7 is in a way that captures all common handwriting styles is so di�cult that this
task is normally left to the computer. A classical approach for doing so is to learn a feed-forward neural
network from pre-classified example images. Since the advent of deep learning (see, e.g., [Sch15]), the
artificial intelligence research community has learned a lot about engineering these networks, such
that they nowadays achieve a very good classification precision and outperform human classifiers
on some tasks, such as sketch recognition [YYS+15]. Even safety-critical applications such as obstacle
detection in self-driving cars nowadays employ neural networks.

But if we do not have formal specifications, how can we assure the safety of such a system? The
classical approach to tackle this problem is to construct safety cases [WK15]. In such a safety case,
we characterize a set of environment conditions under which a certain output is desired and then
test if the learned problem model ensures this output under all considered environment conditions.
In a self-driving car scenario, we can define an abstract obstacle appearance model all of whose
concretizations should be detected as obstacles. Likewise, in a character recognition application, we
can define that all images that are close to a given example image (by some given metric) should be
detected as the correct digit. The verification of safety cases somewhat deviates from the classical
aim of formal methods to verify correct system behavior in all cases, but the latter is unrealistic due
to the absence of a complete formal specification. Yet, having the means to test neural networks
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Figure 1: The activation function of a ReLU node, with a linear over-approximation drawn as filled
area.

into the structure of the network itself, so that an additional output neuron yadd outputs a value � 0
if and only if the property is fulfilled. In this case,  is then simply yadd � 0.

There are multiple ways to solve the neural network (NN) verification problem. The encoding
of an NN verification problem to an SMT problem instance is straight-forward, but yields instances
that are di�cult to solve even for modern SMT solvers (as the experiments reported on in Section 4
show). As an alternative, we present a new approach that combines 1) linear approximation of the
overall NN behavior, 2) irreducible infeasible subset analysis for linear constraints based on elastic
filtering [CD91], 3) inferring possible safe node phase choices from feasibility checking of partial
node phase valuations, and 4) performing unit-propagation-like reasoning on node phases. We
describe these ideas in this section, and present experimental results on a tool implementing them
in the next section.

Starting point is the combination of a linear programming solver and a satisfiability solver. We let
the satisfiability solver guide the search process. It determines the phases of the nodes and maintains
a set of constraints over node phase combinations. On a technical level, we allocate the SAT variables
x(v,0) and x(v,�0) for every ReLU node v, and also reserve variables x(v,e) for every MaxPool node v and
every edge e ending in v. The SAT solver performs unit propagation, clause learning, branching, and
backtracking as usual, but whenever the solver is about to branch, we employ a linear programming
solver to check a linear approximation of the network behavior (under the node phases already
fixed) for feasibility. Whenever a conflict is detected, the SAT solver can then learn a conflict clause.
Additionally, we infer implied node phases in the search process.

We describe the components of our approach in this section, and show how they are combined at
the end of it.

3.1 Linear Approximation of Neural Network Value Assignment Functions

Let G = (V,E,W,B,T) be a network representing a function f : Rn ! Rm. We want to build a
system of linear constraints using V as the set of variables that closely approximates f , i.e., such that
every node value assignment function a is a correct solution to the linear constraint system, and the
constraints are as tight as possible. The main di�culty in building such a constraint system is that
the ReLU and MaxPool nodes do not have linear input-output behavior (until their phases are fixed),
so we have to approximate them linearly.

Figure 1 shows the activation function of a ReLU node, where we denote the weighted sum of the
input signals to the node (and its bias) as variable c. The output of the node is denoted using the
variable d. If we have upper and lower bounds [l,u] of c, then we can approximate the relationship
between c and d by the constraints d � 0, d � c, and d  u·(c�l)

u�l , all of which are linear equations for
constant u and l. This yields the set of allowed value combinations for c and d drawn as the filled
area in Figure 1.

Obviously, this approach requires that we know upper and lower bounds on c. However, even
though neural networks are defined as functions from Rn, bounds on the input values are typically
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linear over-approximation  
of ReLU activation function
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discrete-time system 
with  

an AMN φ
x

+ =

Global asymptotic stability: If there exists V: Rn → R such that

(V (0) = 0) ^ (x 6= 0 ! V (x) > 0) ^ (V (x+)� V (x) < 0), ...

General idea: Pick a class of V’s 
such that the sufficient conditions 
can be expressed as an SMT (e.g., 
with linear arithmetic as the theory). 

An example:

Yet, any AMN-representable V 
will do, too.

V (x) = max

i
{aTi x+ bi}
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Search for Lyapunov certificates

17

Want to solve: 
there exists V  
satisfying the sufficient conditions  
for all x

But, cannot (directly) handle “exists for all” quantifiers.

Counterexample-guided search:

Generate candidate V  
(LYAP imposed over a subset of the states)

Find states at which LYAP is violated. 
Revise the conditions for step (1)
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A randomly generated linear system 
with spectral radius of 0.75.
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5 iterations of the algorithm 
constructs a Lyapunov function. 

Each iteration adds a “face” to V.

V (x) = max

i
{aTi x+ bi}
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Completeness of AMNs in function approximation
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Completeness over continuous 
functions is inherited from similar 
completeness of neural networks.

Open question: Can the added expressivity of AMNs be utilized 
for completeness over a broader family of functions?
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Summary 
•X-in-the-loop control 
•Affine multiplexing networks 
•Connections to system analysis, learning and 
decision procedures

A few (potential) future steps 
•Alternative means for nonlinear control synthesis and beating 
fundamental limitations 

•Training Lyapunov-type certificates in AMN form directly from data 
(i.e., simulations) 

•Continuous-time dynamics (modulo technicalities) 
•Control-oriented theories in SMT 
•Domain-specific languages

arbitrary cone

(AMN: z  0 for z 2 R)
arbitrary cone

(AMN: z  0 for z 2 R)
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https://github.com/ipapusha/amnet
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