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Challenges: Stringent and complex constraints
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Control

Planning

Constraints input constraints
obstacle avoidance

reach goal
visit way-points...

reactive to open world
safety-critical

prioritized task
persistent activity
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A widely explored approach

Dynamical
system

Task/Specification

Planning
and control

Constraints

Abstract system

refinement

Abstraction results in high-dimensional systems — Scalability.
Seek an alternative: No explicit abstraction!
no free lunch: must resort to approximations
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Problem formulation

A dynamical system: ẋ = f (x ,u), x : state, u: input.
Performance measured by cost function

J(x ,u) =

∫ T

0
`(x ,u)dt + G(x(T ),u(T ))

Labeling: Atomic propositions AP
Specifications in temporal logic: ϕ over AP.
Goal: Design a controller u : [0,T ]→ U such that the system
minimizes the cost while strictly satisfying ϕ.
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From LTL to Automaton

For a given formula ϕ (subset of LTL), the automaton is

Aϕ = 〈Q,2AP , δ,q0,F 〉.

Q = {q0,q1,q2,q3,q4}
δ : Q × 2AP → Q (labeled directed edges).
q0: initial state
F : accepting states.
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Figure: ϕ = ♦(R1 ∧ ♦(R2 ∧ ♦R3)) ∧�¬Obs.
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Co-safe LTL fragment

An LTL co-safety formula can be represented by a deterministic finite
state automaton,

ρ = q0q1 . . . qn︸ ︷︷ ︸
a finite good prefix

is accepting if qn ∈ F ,

where F is the set of accepting states in Aϕ.
can contain the X (next), ♦ (eventually), U (strong until).
negation only occurs in the front of atomic propositions.

Limited expressiveness:
Reachability: ♦goal.
Safety: ¬obs U goal.
Sequencing: ♦(goal1 ∧ ♦(goal2 ∧ ♦goal3)).
cannot specify fairness and recurrence properties.
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Approximate optimal control for co-safe LTL

Given a dynamical system

ẋ = f (x ,u)

Find u∗ that minimizes

J(x0,u) =

∫ T

t=0
`(x ,u)dt

subject to ∃t0, t1, . . . , tk
δ(qi , x(ti)) = q(ti+1),

i = 0,1, ..., k
qf ∈ F , x(tk ) = xf .

A

B

C

X

t0t1

t2
t3 t4

t5

L(x) = {x 2 C}

L(x) = {x 2 B}

L(x) = {x 2 A}

0 = t0 < t1 < · · · < tN = T

L(x(t�k )) 6= L(x(t+k ))

L(x(t)) = L(x(tk)), tk  t < tk+1

How do we develop a scalable control method that avoids
discretizing the state space?
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ẋ = f (x ,u)

Find u∗ that minimizes

J(x0,u) =

∫ T

t=0
`(x ,u)dt

subject to ∃t0, t1, . . . , tk
δ(qi , x(ti)) = q(ti+1),

i = 0,1, ..., k
qf ∈ F , x(tk ) = xf .

A

B

C

X

t0t1

t2
t3 t4

t5

L(x) = {x 2 C}

L(x) = {x 2 B}

L(x) = {x 2 A}

0 = t0 < t1 < · · · < tN = T

L(x(t�k )) 6= L(x(t+k ))

L(x(t)) = L(x(tk)), tk  t < tk+1

How do we develop a scalable control method that avoids
discretizing the state space?

April 18–20, 2017 Fu et al. x



Approximate value function

Idea: The unknown value function can be arbitrarily closely
approximated by a linear combination of bases.

Vq(x) ' V̂q(x) =
n∑

i=1

wi,qφi,q(x)

e.g. polynomial φq(x) : 1, x2, x3, . . ..

unknown value function—unknown
(finite many) parameters wi .
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Approximate optimal control

min
u

(
∂V ?

q

∂x
f (x ,u) + `(x ,u)

)
= 0, ∀q ∈ Q, ∀x ∈ Inv(q)

V ?
q (x)− V ?

q′(x) = s(q,q′), q′ = δ(q,L(x)).

and boundary condition Vq(xf ) = 0, ∀q ∈ F .
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Approximate optimal control

∂V̂q

∂x
f (x ,u) + `(x ,u) ≥ 0, ∀q ∈ Q, ∀x ∈ Inv(q), ∀u ∈ U ,

V̂q(x)− V̂q′(x) = s(q,q′), q′ = δ(q,L(x)).

and boundary condition

V̂q(xf ) = 0, ∀q ∈ F .

Approximation V̂ is a lower bound [CDC’16] on the true value function,
i.e., V̂q0(x0) ≤ V ?

q0
(x0)
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Approximate optimal control

max
w

V̂q0(x0)

subject to:
∂V̂q

∂x
f (x ,u) + `(x ,u) ≥ 0, ∀q ∈ Q, ∀x ∈ Inv(q),

q0 = δ(qinit ,L(x0)),

V̂q(x)− V̂q′(x) = s(q,q′), q′ = δ(q,L(x)).

V̂q(xf ) = 0,∀q ∈ F .
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Approximate optimal control

Given w (weight parameter), and φq (vector of basis functions),

max
w

wT
q0
φq0(x0)

subject to:
∂wT

q φq

∂x
f (x ,u) + `(x ,u) ≥ 0, ∀q ∈ Q, ∀x ∈ Inv(q),

q0 = δ(qinit ,L(x0)),

wT
q φq(x)− wT

q′φq′(x) = s(q,q′), q′ = δ(q,L(x)).

wT
q φq(xf ) = 0, ∀q ∈ F .

where V̂q(x) =
∑

i wi,qφi,q(x) as the value function approximation.
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Approximate optimal control

LTI system with quadratically representable invariance regions
and guards⇒ SDP [CDC’16] and SYDAR tool

pip install sydar

Nonlinear system: Semi-infinite program.
Existing algorithms [R Hettich, 1993] are inefficient with
non-differentiable objective functions.

Propose: An importance-sampling based search!
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Model Reference Adaptive Search

Our method is based on MRAS [Hu, Fu, & Marcus, 2007], a general
sampling-based method for global optimization

x? ∈ argmaxx∈XH(x), X ⊆ Rn.

1 Define a sequence of reference distributions {gk (·)} that
converges to a “Dirac” around x?, e.g.,

gk (x) =
H(x)gk−1(x)∫

Z H(x ′)gk−1(x ′)ν(dx ′)
, k = 1,2, . . .

2 Approximate the exact reference distributions {gk (·)} by a
parameterized family of distributions {p(·, θ) | θ ∈ Θ}.

3 Generate a sequence of parameters {θk} by minimizing the
Kullback-Leibler (KL) divergence between gk (·) and p(·, θ),

DKL(gk ,p(·, θ)) :=

∫
Z

ln
gk (x)

p(x , θ)
gk (x)ν(dx).
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A simple/naive formulation

Add a terminal cost to penalize value/policy that does not satisfy the
temporal logic constraints.

minimizeW J(x0,u) + J̄ × (1− 1F (qf )).

Given V̂ , derive u from the HJB—assuming that V̂ is optimal.

u(x ,q) = arg min
u∈U
{∂V̂q(x)

∂x
· f (x ,u) + `(x ,u)}

V̂ (x ,q) = min
q′

{
V̂ (x ,q′) + s(x ,q,q′)

}
,

∀x ∈ Ge, ∀e = (q, σ,q′) ∈ E ,q(t+k ) = δ(q(t−k ),L(x(t+k ))).

Approximate actor-critic NN fails with local optimality and
discontinuity in the value function!
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Sampling-based approximate optimal planning

Problem: randomly sampling weights that satisfy all the constraints
that are also optimal is a rare event.

Nominal
system

Approximate
optimal policy

Adaptive
search for w∗û∗

Sampling
∼ p(·, θ) Simulation

EvaluationUpdate θk+1

Initial θ0 Wk = {wi}

Costs {Ji}
Elite samples

Ek ⊆Wk

Converge θ∗, w∗ ∼ p(·, θ∗)

Figure: The overview of the proposed sampling-based optimal control for LTL
constraints.
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Learning from “bad” weights

A “bad” weight results in a policy that violates the constraints.
Difficulty with a good start.

Solution: Learning from the “bad” weights using guided search.
♦(R1 ∧ ♦(R2 ∧ ♦R3)) ∧�¬Obs.

x

y

R1

R2

R3

Obs

Red: satisfies partial spec.
Black: satisfies the spec but
not optimal.

Both provide information about
optimal policy.
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Learning from “bad” weights

Idea:
Instead of throwing away unsatisfying weights,
... penalizes with a cost.

Rank-guided weighting of samples.
1 rank(q) = 0 for all final q.
2 rank(q) = minq′∈Q{rank(q′) + 1 | ∃A ∈ 2AP , δ(q,A) = q′}.

A state-dependent terminal cost:

h(q) =

{
0 for all q ∈ F .
rank(q)× c otherwise.

q0start

q1

q2

q3

q4

A

B

C

B

¬B

B
A

C
B

¬B
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Example: Linear Quadratic control with LTL

For linear quadratic system, the optimal value function is polynomial.
Red polynomial basis φ(x) = [x1x2, x2

1 , x
2
2 ], for each q ∈ Q.

The number of total weight vectors 15.

x(1)

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

x
(2

)

-1.5

-1

-0.5

0

0.5

1

1.5

x0 = [-0.5; -0.5]

x0 = [0.5; 0.5]

A

C

B

X0

X0 q0start

q1

q2

q3

q4

A

B

C

B

¬B

B
A

C
B

¬B

Figure: Automaton Aϕ1 for ϕ1 = (A→
♦B) ∧ (C → ♦B) ∧ (♦A ∨ ♦C).
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Example: Linear Quadratic control with LTL

The convergence of weight vectors (converge after 10-12 iterations.
Each iteration uses 100 samples.)
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Example: Dubins car optimal control with LTL

Specification: Visit the target while avoiding the obstacles.
A mixture of bases:

Localized Radial Gaussian
basis:

φ(x) = exp
(−‖x − xi‖2

2σ2

)
for pre-selected discrete
centers (in x-y coordinate) xi
and σ.
Trigonometric functions:
cos(θ), sin(θ).

x
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Example: Dubins car optimal control: LTL co-safe spec

Specification: visit regions A, B, C in any order and avoid the
obstacles.
A mixture of bases:

Localized Radial Gaussian
basis:

φ(x) = exp
(−‖x − xi‖2

2σ2

)
for pre-selected discrete
centers (in x-y coordinate) xi
and σ.
Trigonometric functions:
cos(θ), sin(θ).
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Conclusion and future work

We proposed an importance sampling based approximate optimal
control algorithm under temporal logic constraints.
Introducing rank-guided policy search — similar to reward shaping
— to enable learning from bad samples.

Current and future work:
Feature selection: How to select a sparse set of basis function.
Good starting point matters: Value function relates to control
Lyapunov function for switched linear systems.
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