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ABSTRACT

We investigate a sampling-based method for optimal con-
trol of continuous-time and continuous-state (possibly non-
linear) systems under co-safe linear temporal logic specifica-
tions. We express the temporal logic specification as a de-
terministic, finite automaton (the specification automaton),
and link the automaton’s discrete transitions to the con-
tinuous system state as it passes through specified regions.
The optimal hybrid controller is characterized by a set of
coupled partial differential equations. Because these equa-
tions are difficult to solve exactly in practice in all cases, we
propose instead a sampling based technique to solve for an
approximate controller through approximate value iteration.
We adopt model reference adaptive search—an importance
sampling optimization algorithm—to determine the mixing
weights of the approximate value function expressed in a fi-
nite basis. Under mild technical assumptions, the algorithm
converges, with probability one, to an optimal weight that
ensures the satisfaction of temporal logic constraints, while
minimizing an upper bound for the optimal cost. We demon-
strate the correctness and efficiency of the method through
numerical experiments, including temporal logic planning
for a linear system, and a nonlinear mobile robot.

Keywords

Approximate optimal control, formal methods, importance
sampling, hybrid systems.

1. INTRODUCTION
In this work, we propose a novel sampling-based optimal

control method for continuous-time and continuous-state non-
linear systems subject to a subclass of temporal logic con-
straints, i.e., co-safe Linear Temporal Logic (LTL) [15]. Co-
safe LTL formulas are LTL formulas with satisfying traces
that can be recognized by a deterministic finite automaton.
Co-safe LTL is an expressive formal language that allows one
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to specify a variety of finite-time behaviors, including tradi-
tional reaching-a-goal, stability, obstacle avoidance, sequen-
tially visiting regions of interest, and conditional reactive
behaviors [21].

Typically, trajectory generation and control of continu-
ous systems with formal specifications is performed using
abstraction-based synthesis, for example, by computing a
discrete transition system that abstracts or simulates the
system dynamics, and then planning in the discrete state
space. Abstraction-based synthesis methods have been stud-
ied extensively for continuous linear and nonlinear systems
[12, 3, 5, 18, 2, 24, 27].

However, abstraction-based synthesis has several impor-
tant limitations. Among these, we highlight three: first,
because they rely on discretization, abstraction-based meth-
ods scale poorly with the dimension of the continuous state
space; second, optimality is no longer guaranteed when a
controller is synthesized with the discrete abstracted system;
and third, depending on the specific abstraction method, it
is possible that a control policy exists for the underlying
continuous control system even when one does not appear
to exist in the abstraction.

To address these concerns, the work [20] exploited the
idea that continuous-time and continuous-state systems con-
strained by co-safe LTL specifications can be viewed as hy-
brid dynamical systems. The continuous state space is aug-
mented with the discrete states of the specification automa-
ton, derived from the co-safe LTL formula. Then, a hybrid
feedback controller is obtained by solving or approximately
solving the corresponding Hamilton–Jacobi–Bellman (HJB)
equations for the hybrid value function. For linear sys-
tems, the approximate hybrid value function can be obtained
by semidefinite programming. But for general nonlinear
systems, the resulting optimization problem is semi-infinite
[22], and difficult to solve.

We tackle the computational difficulty of this semi-infinite
program in the optimal control synthesis for this class of
hybrid systems by developing an importance sampling algo-
rithm. The key idea is to regard the control problem as a
problem of inference, from sampled trajectories, of a weight
vector that defines an approximate value function in a given
basis. For sample-efficient search through the weight param-
eter space, we use model reference adaptive search (MRAS)
[9]. In our MRAS-inspired algorithm, specific policies are
computed from the value function approximations. These
weights are then ranked by the performance of their corre-



sponding controllers, and the best performing weights (elite
samples) are used to improve the weight sampling distribu-
tion. The aim is to find a value function approximation that
minimizes an upper bound on the total cost. Similar cross-
entropy (CE) methods have been used for trajectory plan-
ning in the past [13, 19], with the goal of finding a sequence
of motion primitives or a sequence of states for interpolation-
based planning. In stochastic policy optimization [14], CE
is also useful for computing linear feedback policies.
Under certain regularity assumptions, we show that our

sampling method is probabilistically complete, i.e., it con-
verges to the optimal value function approximation in a
given basis as the sample size goes to infinity. To improve
the sampling efficiency, we employ rank functions in the
specification to guide the iterative update of the sampling
distribution. Based on experimental studies, we show that
our method can generate an initial feasible hybrid controller
that satisfies the co-safe LTL specification, which is then
continually improved as more computation time is permit-
ted. However, when a limited number of samples is used for
each iteration, the method may converge to local optima.
In the last section, we discuss future extensions to address
these problems and conclude the work.

2. PROBLEM DESCRIPTION
We consider a continuous-time and continuous-state dy-

namical system on R
n. This system is given by

ẋ = f(x, u), x(0) = x0, (1)

where x(t) ∈ X ⊆ R
n and u(t) ∈ U ⊆ R

m are the state
and control signals at time t. For simplicity, we restrict f to
be a Lipschitz continuous function of (x, u), and the control
input u to be a piecewise right-continuous function of time,
with finitely many discontinuities on any finite time inter-
val. These conditions ensure the existence and uniqueness
of solutions, and are meant to prevent Zeno behavior.

2.1 Co-safe Linear Temporal Logic
The system (1) is constrained to satisfy a specification on

the discrete behavior obtained from its continuous trajec-
tory. First, let AP be a finite set of atomic propositions,
which are logical predicates that hold true when x(t) is in
a particular region of the state space X . Then, define a la-
beling function L : X → Σ, which maps a continuous state
x ∈ X to a finite set Σ = 2AP of atomic propositions that
evaluate to true at x. This function partitions the continu-
ous space X into regions that share the same truth values
in AP. The labeling function also links the continuous sys-
tem with its discrete behavior. In the following definition,
φ(x0, [0, T ], u) refers to the trajectory of the continuous sys-
tem with initial condition x0 under the control input u(t)
over the time interval [0, T ].

Definition 1. Let t0, t1, . . . , tN be times, such that

• 0 = t0 < t1 < · · · < tN = T ,

• L(x(t)) = L(x(tk)), tk ≤ t < tk+1, k = 0, . . . , N ,

• L(x(t−k )) 6= L(x(t+k )), k = 0, . . . , N .

The discrete behavior, denoted B(φ(x0, [0, T ], u)), is the dis-
crete word σ0σ1 . . . σN−1 ∈ Σ∗, where σk = L(x(tk)).

In the scope of this paper, we consider a subclass of lin-
ear temporal logic (LTL) specifications called co-safe LTL.
A co-safe LTL formula is an LTL formula such that every
satisfying word has a finite good prefix1 [15]. This sub-
class of LTL formulas can be used to express tasks that
can be completed in a finite time horizon. Given a co-
safe LTL specification ϕ over the set of atomic propositions
AP, there exists a corresponding deterministic finite-state
automaton (DFA) Aϕ = 〈Q,Σ, δ, q0, F 〉, where Q is a fi-
nite set of states (modes), Σ = 2AP is a finite alphabet,
δ : Q × Σ → Q is a deterministic transition function such
that when the symbol σ ∈ Σ is read at state q, the automa-
ton makes a deterministic transition to state δ(q, σ) = q′,
q0 ∈ Q is the initial state, and F ⊆ Q is a set of final,
or accepting states. The transition function is extended to
a sequence of symbols, or a word w = σ0σ1 . . . ∈ Σ∗, in
the usual way: δ(q, σ0v) = δ(δ(q, σ0), v) for σ0 ∈ Σ and
v ∈ Σ∗. We say that the finite word w satisfies ϕ if and only
if δ(q0, w) ∈ F . The set of words satisfying ϕ is the language
of the automaton Aϕ, denoted L(Aϕ).

The discrete behavior encodes the sequence of labels vis-
ited by the state as it moves along its continuous trajec-
tory. Specifically, the atomic propositions are evaluated only
at the times when the evaluation of an atomic proposition
changes value, indicated by the sequence of discrete time-
stamps t0, t1, . . . , tN . Thus a trajectory φ(x0, [0, T ], u) satis-
fies an LTL specification ϕ if and only if its discrete behavior
is in the language L(Aϕ). The optimal control problem is
formulated as follows.

Problem 1. Consider the system (1), a co-safe LTL speci-
fication ϕ, and a final state xf ∈ X . Design a control law u
that minimizes the cost function

J(x0, u) =

∫ T

0

ℓ(x(τ), u(τ)) dτ

+
N
∑

k=0

s(x(tk), q(t
−
k ), q(t

+
k ))

(2)

subject to the constraints that B(φ(x0, [0, T ], u)) ∈ L(Aϕ)
and x(T ) = xf .

Here, ℓ : X × U → R is a continuous loss function, and
s : X × Q × Q → R is the cost to transition between two
states of the automaton whenever such a transition is al-
lowed. The final state x(T ) = xf is also specified. Simi-
lar problems have been studied in prior work [7, 8, 28, 5,
27, 26, 11]. Recently, the work [20] showed that determin-
ing an optimal controller for continuous-time systems under
co-safe LTL behavior constraints can be translated into an
optimal hybrid control problem. For linear and polynomial
systems, an approximate optimal controller can be obtained
by a special formulation of semi-infinite programming prob-
lems. The novelty in this paper is the development of a
sampling-based algorithm that handles both nonlinear dy-
namical constraints, and co-safe LTL specifications. The al-
gorithm is based on MRAS, which is briefly described next.

2.2 Model Reference Adaptive Search (MRAS)

1For two given words v, w ∈ Σ∗, the word v is a prefix of w
if and only if w = vu for some u ∈ Σ∗. The word u is called
the suffix of w.



MRAS [9] is a general sampling-based method for global
optimization that aims to solve the following problem:

z⋆ = argmax
z∈Z

H(z),

where Z ⊆ R
n is the solution space and H : Rn → R is a

real-valued function that is bounded from below. It assumes
that the optimization problem has a unique maximum, i.e.,
z⋆ ∈ Z, and H(z) < H(z⋆) for all z 6= z⋆.
The key idea of MRAS is similar to cross-entropy (CE) op-

timization methods. First, we sample the solution space Z
with a parameterized distribution. Then, we select samples
with the highest objective values, termed “elite samples,”
and update the parameters of the sampling distribution to
assign a higher probability mass to the elite samples. As-
suming the neighborhood of the optimal solution z⋆ has a
positive probability of being sampled, andH satisfies certain
regularity conditions [9, §2], the parametrized distribution
converges to a distribution concentrated around z⋆. The
MRAS algorithm consists of the following key steps:

• Define a sequence of reference distributions {gk(·)}
that converges to a distribution centered on the op-
timal solution z⋆, for example,

gk(z) =
H(z)gk−1(z)

∫

Z
H(z′)gk−1(z′)ν(dz′)

, k = 1, 2, . . . ,

where ν(·) is the Lebesgue measure defined over Z.

• Define a parameterized family of distributions {p(·, θ) |
θ ∈ Θ} over Z, onto which the exact reference distri-
butions {gk(·)} will be projected.

• Generate a sequence of parameters {θk} by minimizing
(over θ ∈ Θ) the Kullback–Leibler (KL) divergence
between gk(·) and p(·, θ),

DKL(gk, p(·, θ)) :=

∫

Z

ln
gk(z)

p(z, θ)
gk(z)ν(dz),

at each step k = 1, 2, . . .

The sample distributions {p(·, θk)} are meant to be com-
pact approximations of the reference distributions {gk(·)}
that converge to the same optimal solution. Note that the
reference distributions {gk(·)} are unknown beforehand, as
the optimal solution is unknown. In order to represent the
reference distributions {gk(·)}, MRAS uses estimation of dis-
tributions [6] from elite samples (similar to CE). Then, the
MRAS algorithm computes the parameter that minimizes
the KL divergence between the sampling distribution and
the reference distribution. As shown in [9], MRAS has bet-
ter convergence rates and stronger guarantees than CE over
several benchmark examples.

3. HYBRID SYSTEM FORMULATION OF

CONTROL SYSTEMS UNDER TEMPO-

RAL LOGIC CONSTRAINTS
To apply MRAS in solving Problem 1, we follow the set-

ting and notation of [20] to define a hybrid system from the
control system dynamics and the temporal logic constraints.
The state space of the hybrid system is the product of the
continuous state space X and the discrete state space Q
of the specification automaton Aϕ, which is obtained from

the co-safe LTL specification ϕ with existing tools [4, 16].
This produces a hybrid system where each mode is governed
by the same continuous vector field (1). Switching between
different discrete modes occurs when the continuous state
crosses a boundary between two labeled regions. Specifi-
cally, we consider the following product hybrid system:

Definition 2. The product system H = 〈Q,X ,Σ, E, f,R,G〉
is an internally forced hybrid system, where

• Q is the set of discrete states (modes) of Aϕ,

• X ⊆ R
n is the set of continuous states,

• Σ = 2AP is the power set of atomic propositions,

• E ⊆ Q × Σ ×Q is a set of discrete transitions, where
e = (q, σ, q′) ∈ E if and only if δ(q, σ) = q′,

• f : X × U → R
n is the continuous vector field given

by (1),

• R = {Rq | q ∈ Q} is a collection of regions, where

Rq,σ = {x ∈ X | (q, σ, q) ∈ E,

and L(x) = σ}, q ∈ Q, σ ∈ Σ,

Rq =
⋃

σ∈Σ

Rq,σ, q ∈ Q,

• G = {Ge | e ∈ E} is a collection of guards, where

Ge = {x ∈ ∂Rq,σ | δ(q, L(x)) = q′},

for each e = (q, σ, q′) ∈ E.

Each invariant region Rq refers to the continuous states
x ∈ X that are reachable while the automaton is in mode q.
For each discrete mode q, the continuous state evolves inside
Rq until it enters a guard region G(q,σ,q′) and a discrete
transition to mode q′ is made.

We can solve the optimal control problem with dynamic
programming by ensuring that the optimal value function is
zero at every accepting state of the automaton. Let V ⋆ :
X ×Q → R be the optimal cost-to-go in (2), with V ⋆(x0, q0)
denoting the optimal objective value when starting at initial
condition (x0, q0), subject to the discrete behavior specifica-
tion and final condition x(T ) = xf for a free terminal time
T . The existance of the controller is assumed.

In this setting, the cost-to-go satisfies a collection of mixed
continuous-discrete Hamilton–Jacobi–Bellman (HJB) equa-
tions,

0 = min
u∈U

{

∂V ⋆(x, q)

∂x
· f(x, u) + ℓ(x, u)

}

,

∀x ∈ Rq, ∀q ∈ Q,

(3)

V ⋆(x, q) = min
q′

{

V ⋆(x, q′) + s(x, q, q′)
}

,

∀x ∈ Ge, ∀e = (q, σ, q′) ∈ E,
(4)

0 = V ⋆(xf , qf ), ∀qf ∈ F. (5)

Equation (3) says that V ⋆(x, q) is an optimal cost-to-go in-
side the regions where the label remains constant. The next
equation (4) is a shortest-path equality that must hold at
every continuous state x where discrete state transition to
a different label can happen. Finally, the boundary equa-
tion (5) fixes the value function.



4. APPROXIMATE OPTIMAL CONTROL UN-

DER TEMPORAL LOGIC CONSTRAINTS
In this section, we show that by approximating the op-

timal value function V ⋆(x, q) at each state q ∈ Q with a

linear combination V̂ (x, q) of pre-defined basis functions, we
can formulate a semi-infinite programming problem over the
weight parameters. This value function candidate minimizes
an upper bound of the optimal total cost.

Assumption 1. For each mode q ∈ Q, the optimal value
function V ⋆(·, q) is C1-differentiable. Moreover, the optimal
value function V ⋆(·, q) is positive semidefinite. This is guar-
anteed by the condition ℓ(x, u) > 0, for all x ∈ X \{xf} and
u ∈ U , and s(x, q, q′) > 0, for all x ∈ X , q, q′ ∈ Q.

Recall from the Weierstrass higher-order approximation
theorem [25] that there exists a complete independent set
of bases {φi(x, q) | i = 1, . . . , Nq}, such that the function
V ⋆(x, q) is uniformly approximated as

V ⋆(x, q) =

Nq
∑

i=1

wi,qφi,q(x) +

∞
∑

i=Nq+1

wi,qφi,q(x), and

∂V ⋆(x, q)

∂x
=

Nq
∑

i=1

wi,q
∂φi,q(x)

∂x
+

∞
∑

i=Nq+1

wi,q
∂φi,q(x)

∂x
,

for some weights {wi,q}, where in both expressions, the last
term converges uniformly to zero as Nq → ∞.
Thus, it is justified to assume that for any state q, the

optimal value function approximation V̂ (x, q) in a given set
{φi,q(x)} of bases is

V̂ (x, q) =

Nq
∑

i=1

wi,qφi,q(x).

We write V̂ (x, q) compactly as ~wT
q
~φq(x) where

~wq = [w1,q, . . . , wNq ,q]
T , ~φq(x) = [φ1,q(x), . . . , φNq ,q(x)]

T .

With a slight abuse of notation, the overall piecewise contin-
uous value function approximation is denoted V̂ = 〈W,Φ〉

with W = [~wq]q∈Q and Φ = [~φq]q∈Q and V̂ (x, q) = ~wT
q
~φq(x),

for all x ∈ Rq.

Given an approximate value function V̂ , we define a hy-
brid feedback control law u : X ×Q → U as

u(x, q) = argmin
a∈U

{

∂V̂ (x, q)

∂x
· f(x, a) + ℓ(x, a)

}

. (6)

For simulation-based optimization, we minimize an upper
bound for the optimal total cost, and define the optimal
value function approximation as follows.

Definition 3. The projected optimal value function ap-
proximation is given by an optimal W ⋆ ∈ W that solves

minimize
W∈W

J(x0, u) + J̄ × (1− 1F (qf )) (7a)

subject to V̂ = 〈W,Φ〉 (7b)

u(x, q) = argmin
a∈U

{

∂V̂ (x, q)

∂x
· f(x, a) + ℓ(x, a)

}

,

∀x ∈ Rq, ∀q ∈ Q, (7c)

V̂ (x, q) = min
q′

{

V̂ (x, q′) + s(x, q, q′)
}

,

∀x ∈ Ge, ∀e = (q, σ, q′) ∈ E, (7d)

V̂ (xf , qf ) = 0, ∀qf ∈ F (7e)

ẋ = f(x, u), x(0) = x0,

q(t+k ) = δ(q(t−k ), L(x(t
+
k ))),

∀tk such that L(x(t−k )) 6= L(x(t+k )), (7f)

where J̄ ∈ R+ is a pre-defined large penalty for violating the
specification.

The choice of J̄ will be discussed in more detail in Sec-
tion 4.2. Note that the decision variable W is implicit in the
objective function and explicit in the controller u, on which
the cost function is dependent.

We only consider value function approximations of the
form V̂ = 〈W,Φ〉 for a given set of bases Φ. For each
value function approximation, the corresponding controller
is fixed under constraint (7c). The optimal value function
approximation is the one that minimizes the the actual cost
J(x0, u) under that fixed controller within the constrained
policy space. Slightly abusing notation, let us denote by
J(x0;W ) the cost generated by applying the controller u
computed from the value function approximation 〈W,Φ〉,

and by V̂ (x0;W ) the value function approximation 〈W,Φ〉
evaluated at the initial state x0.

4.1 Sampling-based control design
Previously, variants of gradient descent [17, 1] have been

used to implement approximate value iteration. Local op-
tima can be problematic when there is discontinuity in the
value function for hybrid systems. Besides, finding a reason-
able starting point within the weight space is also critical
for the successful application of the gradient descent. We
instead employ MRAS to solve (7). The idea is to sample
the weight space W according to a parameterized distribu-
tion p(·, θ) for parameter θ ∈ Θ. For each sampled weight,
we simulate the run of the corresponding optimal controller
using a model of the system for a finite time T . The finite
time T is an estimated upper bound on the time it takes for
the system to stabilize to xf with a final bounded error, for
any controller with which the closed-loop system satisfies the
specification. By evaluating the sampled trajectory, we up-
date θ to bias the sampling distribution towards promising
weight parameters. With probability one, the distribution
will converge to a parameter θ⋆, and the distribution p(·, θ⋆)
concentrates on the solution W ⋆ to the optimization prob-
lem (7).

First, we select a multivariate Gaussian distribution as
the sample distribution. Recall that the probability density



of a multivariate Gaussian distribution is given by

p(W ; θ) =
1

√

(2π)N |Σ|
exp(−

1

2
(W − µ)TΣ−1(W − µ)),

θ = (µ,Σ), ∀W ∈ W,

where µ is the mean vector, Σ is the covariance matrix, N
is the dimension of weight vector W ∈ W, and |Σ| is the
determinant of Σ.
Next, we iteratively update the mean and covariance of

the sampling distribution until p(·, θk) converges to a de-
generate distribution with a vanishing covariance.

1) Initialization: Select an initial distribution over weight
vectors W, denoted p(·, θ0), for some θ0 ∈ Θ. We spec-
ify a parameter ρ ∈ (0, 1], a small real ε ∈ R+ called
an improvement parameter, an initial sample size N0, a
smoothing coefficient α ∈ (0, 1], a strictly decreasing and
positive function S : R → R+. Possible choices can be
S(x) = e−x or S(x) = 1

x
for x strictly positive (which is

the case here because the total cost is always positive).
Set k := 1 and go to step 2).

2) Sampling: At each iteration k, given the current distri-
bution p(·, θk), generate a set SW of Nk samples. For
each W ∈ SW in the sample set, evaluate J(x0;W ) by
simulating the system model (1) with the approximate

controller (6), where V̂ = 〈W,Φ〉.

3) Reject unsatisfiable policies: Reject all weights for
which the generated controllers do not satisfy the LTL
formula. The remaining set of weights is denoted SW sat.

4) Select elite samples and threshold: Order the set
{J(x0;W ) | W ∈ SW sat} from largest (worst) to smallest
(best) among the given samples,

Jk,(0) ≥ . . . ≥ Jk,(Nk).

Let κ be the estimated (1− ρ)-quantile of costs J(·;W ),
i.e., κ = Jk,⌈(1−ρ)Nk⌉.

• If k = 0, we introduce a threshold γ := κ.

• If k 6= 0, the following cases are further distin-
guished:

– If κ ≤ γ−ε, i.e., the estimated (1−ρ)-quantile of
cost has been reduced by the amount ε from the
last iteration, then update γ := κ, Nk+1 := Nk,
and go to step 5).

– Otherwise, if κ > γ − ε, find the largest ρ′, if it
exists, such that the estimated (1− ρ′)-quantile
of cost κ′ = Jk,⌈(1−ρ′)Nk⌉ satisfies κ′ ≤ γ − ε.
Then, update γ := κ′, and also the quantile
ρ := ρ′. Set Nk+1 := N0 and go to step 5). If
no such ρ′ exists, increase the sample size by
a factor of (1 + α), Nk+1 = ⌈(1 + α)Nk⌉. Set
θk+1 := θk, k := k + 1, and go to step 2).

5) Parameter update: Update parameters θk+1 for iter-
ation k + 1 as follows. First, define a set EW = {W |
J(x0;W ) ≤ γ,W ∈ SW sat} of elite samples. The samples
in EW are accepted and samples not in EW are rejected
during the parameter update defined next. Select the

next parameter θk+1 to maximize the weighted sum of
probabilities of elite samples according to a weighting

θ⋆k+1 = argmax
θ∈Θ

∑

W∈EW

S(J(x0;W ))k

p(W, θk)
p(W, θ) (8)

that puts a higher weight on those weight vectors with
the lowest costs. Since the optimal parameter θ⋆k+1 can-
not be determined analytically, we use maximum like-
lihood estimate of the elite sample distribution θ⋆k+1 ≈
(µk+1,Σk+1), where

µk+1 =
Eθk

(

S(J(x0,W ))k

p(W,θk)

)

IEW(W ) ·W

Eθk

(

S(J(x0,W ))k

p(W,θk)

)

IEW(W )

≈

∑

W∈SW

(

S(J(x0,W ))k

p(W,θk)

)

IEW(W ) ·W
∑

W∈SW

(

S(J(x0,W ))k

p(W,θk)

)

IEW(W )
, (9)

and

Σk+1 =
Eθk

(

S(J(x0,W ))k

p(W,θk)

)

IEW(W ) · (W − µ)(W − µ)T

Eθk

(

S(J(x0,W ))k

p(W,θk)

)

IEW(W )

≈

∑

W∈SW

(

S(J(x0,W ))k

p(W,θk)

)

IEW(W ) · (W − µ)(W − µ)T

∑

W∈SW
S(J(x0;W ))k

p(W,θk)
IEW(W )

.

(10)

Note that we approximate Eθk h(r) with its sample esti-
mate, 1

Nk

∑

W∈SW h(W ) for r ∼ p(·, θk), and IEW : W →

{0, 1} is the indicator function that equals 1 if W ∈ EW
and 0 otherwise.

6) Smoothing update: The actual parameter is smoothed
with parameter λ ∈ (0, 1) as

θk+1 := λθk + (1− λ)θ⋆k+1. (11)

7) Stopping criterion: Stop the iteration if the covariance
matrix Σk becomes near singular, that is, the determi-
nant of Σk approaches 0. The reason for this choice of
stopping criterion is given next.

In the algorithm, elite samples can be reused by includ-
ing in the current sample SW at iteration k, denoted SWk,
the set of elite samples from the previous iteration EW, de-
noted EWk−1 for k > 1. The current set of elite samples is
obtained from the ρ-quantile of SWk ∪ EWk−1.

We show that the global convergence of the algorithm is
ensured by the properties of MRAS under the following addi-
tional assumptions. Let W ⋆ be the optimal weight parame-
terizing the projected optimal value function approximation.

Assumption 2. For any given constant ξ > J(x0;W
⋆), the

set {W | J(x0;W ) ≤ ξ} ∩W has a strictly positive Lebesgue
measure.

This condition ensures that any neighborhood of the opti-
mal solution W ⋆ will be sampled with a positive probability.

Assumption 3. For any δ > 0, we have infW∈Wδ
J(x0;W ) >

J(x0;W
⋆), where Wδ := {W | ‖W −W ⋆‖ ≥ δ} ∩W.

Theorem 1 (Adapted from Theorem 1 [9]). Under assump-
tions 1–3, the algorithm converges (w.p.1) to

lim
k→∞

µk = W ⋆ and lim
k→∞

Σk = 0n×n,



provided that (8) is solved exactly.

Since our algorithm directly uses the multivariate Gaus-
sian distribution, it would converge to the global optimal
solution after finitely many iterations if it could be provided
with an infinite number of samples. However, in practice,
only finitely many samples can be used. In addition, the
parameter update (8) is not solved exactly based on the en-
tire set of elite samples. Instead, we provide a maximum
likelihood estimation of θ for the next iteration using a fi-
nite number of elite samples. Similar to the CE method, the
resulting algorithm may converge to local optimal solutions
if the sample size is not sufficient. In general, the number
of samples for each iteration is polynomial in the number
of the decision variables [23], which, in this context, is the
number of unknown weights.
It should be noted that the value function approximation

computed with this sampling-based algorithm is not neces-
sarily a control Lyapunov function. In fact, there is no guar-
antee ahead of time that the space of value function approx-
imations in a given fixed bases contains a control Lyapunov
function. In this case, this method performs approximate
optimal feedback planning in the hybrid system instead of
control design that stabilizes the system.

4.2 Rank-guided sample weighting
A direct implementation of the algorithm should enable

the convergence to a global optimal weight given a chosen
bases. However, for a high-dimensional weight vector space,
it is not likely that many samples will satisfy the specifica-
tions in the first few iterations. As a consequence, we are
left with limited information to update the sampling distri-
bution and the resulting control policy.
To address this issue, we propose a rank-guided adaptive

policy search, which incorporates an additional terminal cost
associated with the rank of the specification state. This
allows us to remove the rejection step, so that all sampled
weight vectors will be associated with costs.

Definition 4. The rank function rank : Q → Z+ maps
each specification state q ∈ Q to a nonnegative integer and
is defined recursively as

rank(q) =

{

0, if q ∈ F,
minσ∈2AP {1 + rank(δ(q, σ))}, otherwise.

It can be shown that given a set Qk of states with rank k,
the set of states Qk+1 with rank k + 1 can be computed

Qk+1 = {q ∈ Q | ∀0 ≤ i ≤ k such that q /∈ Qi

and ∃σ ∈ 2AP such that δ(q, σ) ∈ Qk}.

In other words, Qk+1 contains a state which is not included
in Qi, for i ≤ k, and can take a labeled transition to visit a
state q′ in Qk.
Next, we redefine the terminal cost function related to the

specification state h : Q → R defined by

h(q) =

{

0 if q ∈ F,
rank(q) · c otherwise.

where c is a constant. We must select a constant c at least
as large as the the cost incurred when the system trajectory
triggers a transition in the specification automaton. In prac-
tice, this cost is chosen based on an estimated upper bound
and does not need to be precise.

In summary, we developed a sampling-based method to
search for an optimal weight defining a value function ap-
proximation. The sample distribution is iteratively updated
based on simulated runs that assign a higher probability
to those sampled weights that produce controllers with the
best performance. The method is probabilistically complete.
That is, with infinite number of samples, the algorithm is
ensured to converge to the optimal solution of (7). Further-
more, to address the sample scarcity caused by rejecting
unsatisfying weights, we introduced a meta-heuristic using
the rank function of the specification automaton. Instead of
rejecting weights, the penalty associated with nonzero rank
allows us to assign lower probabilities to those weights that
do not generate correct controllers.

5. EXAMPLES
In this section, we illustrate the correctness and efficiency

of the proposed method with two case studies. The first
is an example linear system, and the second is a nonlinear
system—a Dubins car. The experiments are carried out in
Matlab on an Intel(R) Core(TM) i7 CPU with 16 GB RAM.

5.1 Linear system with halfspace labels
We consider the linear quadratic system on X = R

2 with
the specific parameters

A =

[

2 −2
1 0

]

, B =

[

1
1

]

, Q = I, R = 1, ξ = 1,

x0 = (0.5, 0.5), xf = (0, 0).

Let AP = {a, b, c} consist of atomic propositions that are
true whenever the continuous state enters a specific region,

a : (x1 ≤ −1), b : (−1 < x1 ≤ 1), c : (x1 > 1).

Note that each atomic proposition corresponds to a half
space. Using AP, we partition the state space into three
regions RA = {x ∈ R

2 | x1 ≤ −1}, RB = {x ∈ R
2 | −1 <

x1 ≤ 1}, and RC = {x ∈ R
2 | x1 > 1}, with the following

LTL specification

ϕ1 = (A → ✸B) ∧ (C → ✸B) ∧ (✸A ∨✸C).

This specification ensures that either RA or RC must be
reached, after which the system must eventually visit RB .
The automaton for this specification is shown in Fig. 1.

q0start

q1

q2

q3

q4

A

B

C

B

¬B

B

A

C

B

¬B

Figure 1: Automaton Aϕ1
for ϕ1 = (A → ✸B) ∧ (C →

✸B) ∧ (✸A ∨✸C).

We consider value a function approximation with poly-
nomial bases. The set of bases are {x2

1, x
2
2, x1x2, x1, x2, 1}

for any specification state q ∈ Q. Thus, the total number
of unknown weights is 30. Next, we employ the proposed



algorithm to search for the approximate optimal weight vec-
tor W ⋆. The following parameters are used: Initial sample
size N0 = 100, improvement parameter ǫ = 0.1, smoothing
parameter λ = 0.2, sample increment percentage α = 0.1,
and quantile parameter ρ = 0.1. The algorithm took 11 it-
erations to converge to the approximate optimal value func-
tion with the stopping criterion ‖Σ‖ ≤ 0.001. The cost of
the corresponding controller is 9.8384 with a terminal cost
100× ‖x‖2 and a finite time horizon T = 10.
We test the controller for different initial states. As shown

in Fig. 2b, a trajectory starting at (0.5, 0.5) (near region
RC) visits RC , then RB and stabilizing to the origin. A
trajectory starting at (−0.5,−0.5) (near region RA) visits
RA, then RB in this order.

Remark. When no terminal cost is considered, the approxi-
mate optimal controller can be obtained by convex optimiza-
tion [20]. Using the proposed sampling-based method with
sample size 500 for each iteration, the cost of the computed
optimal controller is 3.723. The optimality can be improved
by increasing sample size, which requires more computation.
Overall, for linear quadratic systems with co-safe LTL spec-
ifications, the direct solution [20] is much more efficient.
However, this solution does not apply to nonlinear systems,
prompting the development of the sampling-based method.

5.2 Dubins car system with obstacle
Given Dubins car dynamics ẋ = u cos(θ), ẏ = u sin(θ),

and θ̇ = v, where x = (x, y, θ) ∈ SE(2) is the state, and u
and v are the inputs to the system (linear and angular ve-
locities), we consider an LTL formula ϕ2 = ✸ (✸ (A∧✸B)∨
✸ (B ∧ ✸A) ∧ ✸C) ∧ �¬obs. The corresponding specifica-
tion automaton is shown in Fig. 3. In this case, the system
needs to traverse regions A and B in any order, and eventu-
ally reach C while avoiding collisions with a static obstacle.
The running cost ℓ is the same as in the previous example,
with terminal cost 100 × ‖(x, y)− (xf , yf )‖. We define an
additional cost h(q) = 2× 103 rank(q), where rank(q) is the
minimum number of transitions required to reach an accept-
ing state from q(T ), where the terminal time T is 50.
In Dubins car case, we select radial basis function (RBF)

bases. An RBF is defined by

φ(x) = exp(−‖x− xc‖
2/2σ2),

where xc is the center of the basis element, and σ is a free
parameter. We define φrbf = [φ1, . . . , φN ]T where the φis
are RBFs centered on a uniform grid in x-y coordinates with
step sizes δx = 5 and δy = 5. The workspace is bounded
0 ≤ x ≤ 30 and 0 ≤ y ≤ 30. The free parameter σ of each
RBF is 5. We also define the bases φθ = [sin(θ), cos(θ)]T

such that for each state q ∈ Q, the vector of basic bases is
φbasic = [φT

rbf, φ
T
θ ]

T .
Additional RBF bases are determined by picking their

centers as the centers of disk regions A, B, C, and obs.
For example, in the state q2, since the region B has been
visited, the center of region A is taken into the considera-
tion, so the basis function with the respect to the state q2
is: φ2 = [φT

basic, φ
T
A, φ

T
obs]

T where φA (resp. φobs) is an RBF
with its center on the center of disk A (resp. obs) and an
RBF parameter σ = 5. Finally, the total number of ba-
sis functions (weight parameters) is 530. For the sampling-
based algorithm, the same set of parameters is used, except
that the initial sample size is chosen to be 500. A smaller
sample size leads to faster updates, but longer iterations.
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Figure 2: (a) The state trajectory for the linear sys-
tem with x0 = (0.5, 0.5) calculated by the computed
controller after the algorithm converges. (b) Ap-
proximate minimal cost trajectories satisfying the
specification. The trajectories start with different
initial states x0 = (−0.5,−0.5) and x0 = (0.5, 0.5) while
the same controller is applied. (c) The cost over it-
erations. (d) The mean of the Gaussian distribution
over iterations for the first three components in the
mean vector.
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Figure 3: Automaton Aϕ2
for ϕ2 = ✸ (✸ (A ∧ ✸B) ∨

✸ (B ∧✸A)∧✸C)∧�¬obs. The self-loops with labels
other than A, B, C, and obs are omitted.

Fig. 4a shows the system trajectories computed using the
value function approximation parameterized by µ over 179
iterations. Each iteration takes 20 to 30 seconds and the
algorithm converges to an optimal controller after 73 it-
erations, with the same stopping criterion as in the linear
example. Interestingly, the algorithm quickly finds a con-
trol policy that satisfies the specification after 15 iterations.
Figs. 4b and 4c show the x and y state trajectories with and
without initial error. The solid lines are the state trajecto-
ries with small initial errors. Even with small initial errors,
the controller ensures satisfaction of the temporal logic con-
straints. Finally, Fig. 4d shows the convergence of the total
cost at each iteration. The x-axis is the iteration number k,
while the y-axis is the total cost value of the mean µk. Note
that the mean of the distribution upon convergence may not
be optimal due to the finite sample size. As a consequence,
when the algorithm terminates under the terminal condi-
tion ‖Σk‖ ≤ 0.005, the distribution may converge to the
sub-optimal solution.

6. CONCLUSION
In this work, we presented a sampling-based method for

optimal control with co-safe LTL constraints. Through a
hybrid system formulation, the objective is to solve a se-
quence of value functions over a hybrid state space, where
the continuous component comes from the continuous-time
and continuous-state dynamics of the system, and the dis-
crete component comes from the specification automaton.
By approximating the value functions with weighted com-
binations of pre-defined bases, we employ model reference
adaptive search (MRAS)—a general sampling-based opti-
mization method—to directly search over weight parameter
space. The method often works in a near-anytime fashion: it
quickly finds a hybrid controller that satisfies the temporal
logic constraint, and improves the value function approxi-
mation by minimizing an upper bound on the actual value
function as more computation time is permitted. The algo-
rithm converges, with probability one, to an optimal value
function approximation. This procedure does not rely on
discretizing the time/state space.
Building on this result, we consider several further de-

velopments. At this stage, this approach is limited to a
subset of LTL specifications that admit deterministic and
finite (rather than Büchi) automaton representations. Ex-
tensions to the general class of LTL specifications that ad-
mit deterministic Büchi automaton are subjects of current
work. We will also consider decomposition-based distributed
sampling so that the algorithm scales to problems in a high-
dimensional weight parameter space. We will further extend
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Figure 4: (a) trajectories for the Dubins car with

the controller u(x, q) computed from V̂ (x;µ) where
µ is the mean of the Gaussian distribution over it-
erations. Dashed lines represent trajectories that
do not satisfy the temporal logic constraints. (b–c)
state trajectories of the Dubins car under the con-
verged controller and errors in the initial states. (d)
cost over iterations.



the proposed method as a building block in anytime optimal
and provably correct decision making systems for nonlinear
robotic systems. Finally, the sampling algorithm is highly
parallelizable, suggesting the use of GPU-accelerated com-
puting to speed up computations.
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[25] K. Weierstrass. Über die analytische Darstellbarkheit
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