Automata Theory Meets Approximate Dynamic Programming: Optimal Control with Temporal Logic Constraints

Ivan Papusha¹ Jie Fu² Ufuk Topcu¹ Richard Murray³

¹University of Texas at Austin ²Worcester Polytechnic Institute ³California Institute of Technology

A Synthesis Problem

Given:

System model

-both continuous & discrete evolution

-actuation limitations

-modeling uncertainties & disturbances

Specifications

high-level requirementsoptimality criteria

$\dot{x} = f(x, u, \delta)$ $g(x, u) \ge 0$

Automatically synthesize a control protocol that

- manages the system behavior and
- is provably correct with respect to the specifications and optimal.

Detour: Specifying Behavior with Temporal Logic

(only a dialect in a large family of languages)

Detour: Specifying Behavior with Temporal Logic

(only a dialect in a large family of languages)

Traffic rules:

- No collision $\Box (\operatorname{dist}(x, \operatorname{Obs}) \ge X_{\operatorname{safe}} \land \operatorname{dist}(x, \operatorname{Loc}(\operatorname{Veh})) \ge X_{\operatorname{safe}})$
- Obey speed limits $\Box ((x \in \text{Reduced}_\text{Speed}_\text{Zone}) \rightarrow (v \leq v_{\text{reduced}}))$
- Stay in travel lane unless blocked
- Intersection precedence & merging, stop line, passing,...

Goals:

- Eventually visit the check point $\Diamond(x = ck_pt)$
- Every time check point is reached, eventually come to start $\Box((x = ck_pt) \rightarrow \Diamond(x = start))$

Detour: Specifying Behavior with Temporal Logic

(only a dialect in a large family of languages)

$$\begin{aligned} x_{t+1} &= f(x_t, w_t, u_t) \\ x \in \mathcal{X}, u \in \mathcal{U}, w \in \mathcal{W} \end{aligned} \longrightarrow$$

$$\begin{aligned} x_{t+1} &= f(x_t, w_t, u_t) \\ x \in \mathcal{X}, u \in \mathcal{U}, w \in \mathcal{W} \end{aligned} \longrightarrow$$

$$\begin{aligned} x_{t+1} &= f(x_t, w_t, u_t) \\ x \in \mathcal{X}, u \in \mathcal{U}, w \in \mathcal{W} \end{aligned} \longrightarrow$$

$$x_{t+1} = f(x_t, w_t, u_t)$$

$$x \in \mathcal{X}, u \in \mathcal{U}, w \in \mathcal{W}$$

Every discrete transition can be "executed" under the continuous dynamics

Why is discretization not necessarily a good idea?

Practically: Complex partitions are needed.

л

Theoretically: Finite yet humongous discrete state spaces may be needed.

Representations and Algorithms for Finite-State Bisimulations of Linear Discrete-Time Control Systems

Andrew Lamperski

An alternative to explicit discretization: no explicit discretization

An alternative to explicit discretization: no explicit discretization

CDC 2016

Automata Theory Meets Approximate Dynamic Programming: Optimal Control with Temporal Logic Constraints

Ivan Papusha[†] Jie Fu^{*} Ufuk Topcu[‡] Richard M. Murray[†]

An alternative to explicit discretization: no explicit discretization

Automata Theory Meets Approximate Dynamic Programming: Optimal Control with Temporal Logic Constraints

Ivan Papusha[†] Jie Fu^{*} Ufuk Topcu[‡] Richard M. Murray[†]

TAC 2015

Automata Theory Meets Barrier Certificates: Temporal Logic Verification of Nonlinear Systems

Tichakorn Wongpiromsarn* Ufuk Topcu[†] Andrew Lamperski[‡]

Given

System model

$$\dot{x} = f(x, u), \quad x(0) = x_0$$

 $x(t) \in \mathcal{X} \subseteq \mathbb{R}^n, \ u(t) \in \mathcal{U} \subseteq \mathbb{R}^m$

continuous time, continuous state with assumptions on f for existence, uniqueness and Zeno-freeness of solutions

Given

System model

$$\dot{x} = f(x, u), \quad x(0) = x_0$$

 $x(t) \in \mathcal{X} \subseteq \mathbb{R}^n, \ u(t) \in \mathcal{U} \subseteq \mathbb{R}^m$

Labeling function $L: \mathcal{X} \to \Sigma = 2^{\mathcal{AP}}$

(what properties hold at a given state?)

Given

System model

$$\dot{x} = f(x, u), \quad x(0) = x_0$$

 $x(t) \in \mathcal{X} \subseteq \mathbb{R}^n, \ u(t) \in \mathcal{U} \subseteq \mathbb{R}^m$

Labeling function $L: \mathcal{X} \to \Sigma = 2^{\mathcal{AP}}$

(what properties hold at a given state?)

$$0 = t_0 < t_1 < \dots < t_N = T$$

$$L(x(t)) = L(x(t_k)), t_k \le t < t_{k+1}$$

$$L(x(t_k^-)) \ne L(x(t_k^+))$$

Given

System model

$$\dot{x} = f(x, u), \quad x(0) = x_0$$

 $x(t) \in \mathcal{X} \subseteq \mathbb{R}^n, \ u(t) \in \mathcal{U} \subseteq \mathbb{R}^m$

Labeling function $L: \mathcal{X} \to \Sigma = 2^{\mathcal{AP}}$

(what properties hold at a given state?)

 $0 = t_0 < t_1 < \dots < t_N = I$ $L(x(t)) = L(x(t_k)), t_k \le t < t_{k+1}$ $L(x(t_k^-)) \ne L(x(t_k^+))$

"discrete" behavior: $\mathbb{B}(\phi(x_0, [0, T], u)) = \sigma_0 \sigma_1 \dots \sigma_{N-1} \in \Sigma^*$ with $\sigma_k = L(x(t_k))$

Given

System model

$$\dot{x} = f(x, u), \quad x(0) = x_0$$

 $x(t) \in \mathcal{X} \subseteq \mathbb{R}^n, \ u(t) \in \mathcal{U} \subseteq \mathbb{R}^m$

Labeling function $L: \mathcal{X} \to \Sigma = 2^{\mathcal{AP}}$

(what properties hold at a given state?)

Co-safe temporal logic specification φ (every satisfying word has a finite "good" prefix)

A final state $x_f \in \mathcal{X}$ and a final time T.

De-tour: Automaton representation for temporal logic

Machine-interpretable representation of all words that satisfy the corresponding temporal logic formula

Deterministic finite automata are sufficient for co-safe linear temporal logic formulas

$$(A \to \Diamond B) \land (C \to \Diamond B) \land (\Diamond A \lor \Diamond C)$$

Problem statement (2)

Model

 $\dot{x} = f(x, u), \quad x(0) = x_0$ $x(t) \in \mathcal{X} \subseteq \mathbb{R}^n, \ u(t) \in \mathcal{U} \subseteq \mathbb{R}^m$

Specification $\,\, \varphi \,$

Problem statement (2)

Model

 $\dot{x} = f(x, u), \quad x(0) = x_0$ $x(t) \in \mathcal{X} \subseteq \mathbb{R}^n, \ u(t) \in \mathcal{U} \subseteq \mathbb{R}^m$

Specification φ

Compute a control law u that minimizes

$$\int_0^T \ell(x(\tau), u(\tau)) \, d\tau + \sum_{k=0}^N s(x(t_k), q(t_k^-), q(t_k^+))$$

I: loss function s: cost of mode transition

subject to $x(T) = x_f$ and

 $\mathbb{B}(\phi(x_0, [0, T], u)) \in \mathcal{L}(\mathcal{A}_{\varphi}).$

all discrete behavior satisfies the specification

Related work

$$\int_0^T \ell(x(\tau), u(\tau)) \, d\tau$$

$$\dot{x} = f(x, u), \quad x(0) = x_0$$

 $x(t) \in \mathcal{X} \subseteq \mathbb{R}^n, \ u(t) \in \mathcal{U} \subseteq \mathbb{R}^m$

Temporal logic specification

$$(A \to \Diamond B) \land (C \to \Diamond B) \land (\Diamond A \lor \Diamond C)$$

restrict to simple specifications

make it a formal methods problem

Related work

 $\int_{0}^{1} \ell(x(\tau), u(\tau)) \, d\tau$

$$\dot{x} = f(x, u), \quad x(0) = x_0$$

 $x(t) \in \mathcal{X} \subseteq \mathbb{R}^n, \ u(t) \in \mathcal{U} \subseteq \mathbb{R}^m$

Temporal logic specification $(A \to \Diamond B) \land (C \to \Diamond B) \land (\Diamond A \lor \Diamond C)$

restrict to simple specifications

Hedlund & Rantzer (optimal control for hybrid systems + convex dynamic programming)

Xu & Antsaklis (optimal control for switched systems)

Kariotoglou, et al. (approximate dynamic programming for stochastic reachability)

make it a formal methods problem

Habets & Belta

Wongpiromsarn, et al.

Wolff, et al.

Fainekos, et al.

The problem can be formulated as a dynamic programming problem over a **product hybrid system**:

$\langle Q, \mathcal{X}, E, f, R, G \rangle$

The problem can be formulated as a dynamic programming problem over a **product hybrid system**:

The problem can be formulated as a dynamic programming problem over a **product hybrid system**:

• The continuous state x evolves according to the vector field.

- The evolution of the discrete state q is governed by the automaton.
- •A discrete transition is triggered when x crosses a boundary between two labeled regions.

The problem can be formulated as a dynamic programming problem over a **product hybrid system**:

- •The continuous state x evolves according to the vector field.
- The evolution of the discrete state q is governed by the automaton.
- •A discrete transition is triggered when x crosses a boundary between two labeled regions.

Dynamic programming formulation

Hybrid Hamilton-Jacobi-Bellman equations over the product space

V*: optimal cost-to-go subject to the specifications

$$0 = \min_{u \in \mathcal{U}} \left\{ \frac{\partial V^*(x,q)}{\partial x} \cdot f(x,u) + \ell(x,u) \right\}$$
$$\forall x \in R_q, \ \forall q \in Q$$

$$V^{\star}(x,q) = \min_{q'} \left\{ V^{\star}(x,q') + s(x,q,q') \right\}$$
$$\forall x \in G_e, \ \forall e = (q,\sigma,q') \in E$$

Dynamic programming formulation

Hybrid Hamilton-Jacobi-Bellman equations over the product space

V*: optimal cost-to-go subject to the specifications

While the labels remain constant:

$$0 = \min_{u \in \mathcal{U}} \left\{ \frac{\partial V^*(x, q)}{\partial x} \cdot f(x, u) + \ell(x, u) \right\}$$
$$\forall x \in R_q, \ \forall q \in Q$$

Over discrete transitions:

$$V^{\star}(x,q) = \min_{q'} \left\{ V^{\star}(x,q') + s(x,q,q') \right\}$$
$$\forall x \in G_e, \ \forall e = (q,\sigma,q') \in E$$

Dynamic programming formulation

Hybrid Hamilton-Jacobi-Bellman equations over the product space

V*: optimal cost-to-go subject to the specifications

While the labels remain constant:

$$0 = \min_{u \in \mathcal{U}} \left\{ \frac{\partial V^*(x,q)}{\partial x} \cdot f(x,u) + \ell(x,u) \right\}$$
$$\forall x \in R_q, \ \forall q \in Q$$

Over discrete transitions:

$$V^{\star}(x,q) = \min_{q'} \left\{ V^{\star}(x,q') + s(x,q,q') \right\}$$
$$\forall x \in G_e, \ \forall e = (q,\sigma,q') \in E$$

At the "terminal" state:

$$0 = V^{\star}(x_f, q_f), \quad \forall q_f \in F$$

$$0 \leq \frac{\partial V(x,q)}{\partial x} \cdot f(x,u) + \ell(x,u) \qquad \forall x \in R_q, \ \forall u \in \mathcal{U}, \ \forall q \in Q$$

 $0 \leq V(x,q') - V(x,q) + s(x,q,q') \qquad \forall x \in G_e, \ \forall e = (q,\sigma,q') \in E$

 $0 = V(x_f, q_f), \quad \forall q_f \in F$

OTT /

$$0 \leq \frac{\partial V(x,q)}{\partial x} \cdot f(x,u) + \ell(x,u) \qquad \forall x \in R_q, \ \forall u \in \mathcal{U}, \ \forall q \in Q$$

 $0 \leq V(x,q') - V(x,q) + s(x,q,q') \qquad \forall x \in G_e, \ \forall e = (q,\sigma,q') \in E$

$$0 = V(x_f, q_f), \quad \forall q_f \in F$$

V: approximate value function

A function V that satisfies the above conditions is an under-estimator for the optimal value function V*:

 $V(x_0, q_0) \le V^*(x_0, q_0)$

$$0 \leq \frac{\partial V(x,q)}{\partial x} \cdot f(x,u) + \ell(x,u) \qquad \forall x \in R_q, \ \forall u \in \mathcal{U}, \ \forall q \in Q$$

compare to
$$0 = \min_{u \in \mathcal{U}} \left\{ \frac{\partial V^{\star}(x,q)}{\partial x} \cdot f(x,u) + \ell(x,u) \right\} \qquad \forall x \in R_q, \ \forall q \in Q$$

 $0 \leq V(x,q') - V(x,q) + s(x,q,q') \qquad \forall x \in G_e, \ \forall e = (q,\sigma,q') \in E$ compare to $V^*(x,q) = \min_{q'} \{V^*(x,q') + s(x,q,q')\} \quad \forall x \in G_e, \ \forall e = (q,\sigma,q') \in E$

 $0 = V(x_f, q_f), \quad \forall q_f \in F$

V: approximate value function

A function V that satisfies the above conditions is an under-estimator for the optimal value function V*:

 $V(x_0, q_0) \le V^*(x_0, q_0)$

$$0 \leq \frac{\partial V(x,q)}{\partial x} \cdot f(x,u) + \ell(x,u) \qquad \forall x \in R_q, \ \forall u \in \mathcal{U}, \ \forall q \in Q$$

compare to
$$0 = \min_{u \in \mathcal{U}} \left\{ \frac{\partial V^*(x,q)}{\partial x} \cdot f(x,u) + \ell(x,u) \right\} \qquad \forall x \in R_q, \ \forall q \in Q$$

 $0 \leq V(x,q') - V(x,q) + s(x,q,q') \qquad \forall x \in G_e, \ \forall e = (q,\sigma,q') \in E$ compare to $V^*(x,q) = \min_{q'} \{V^*(x,q') + s(x,q,q')\} \quad \forall x \in G_e, \ \forall e = (q,\sigma,q') \in E$

$$0 = V(x_f, q_f), \quad \forall q_f \in F$$

V: approximate value function

A function V that satisfies the above conditions is an under-estimator for the optimal value function V*:

 $V(x_0, q_0) \le V^*(x_0, q_0)$

Intuition from purely
discrete version: $V^* = \mathbb{T}V^*$ $V \leq \mathbb{T}V \Rightarrow V \leq V^*$

Approximate value function and approximately optimal control law

Parametrize V with pre-specified basis functions ϕ :

$$V(x,q) = \sum_{i=1}^{n_q} w_{i,q} \phi_{i,q}(x) \qquad \begin{array}{l} \text{basis:} \\ \text{function of } x, \\ \text{indexed by } q \end{array}$$

Search for approximate value function that maximizes $V(x_0, q_0)$.

(one of the many scalarizations)

Approximate value function and approximately optimal control law

Parametrize *V* with pre-specified basis functions ϕ :

$$V(x,q) = \sum_{i=1}^{n_q} w_{i,q} \phi_{i,q}(x)$$
 basis:
function of x, indexed by q

Search for approximate value function that maximizes $V(x_0, q_0)$.

(one of the many scalarizations)

Given V, an approximately optimal control law:

$$u(x,q) = \arg\min_{u \in \mathcal{U}} \left\{ \frac{\partial V(x,q)}{\partial x} \cdot f(x,u) + \ell(x,u) \right\}$$

Mode switchings are autonomous, driven by the evolution of x.

Search for approximate value function

Linear system: $\dot{x}(t) = Ax(t) + Bu(t), \quad x(0) = x_0,$

Quadratic continuous cost: $\ell(x, u) = x^T Q x + u^T R u$, $Q \succeq 0$, $R \succ 0$

Constant switching cost: $s(x, q, q') = \xi \cdot \mathbb{I}(\{(q, q') \mid q \neq q'\})$

For each $q \in Q$, parametrize V by P_q , r_q , t_q : $V(x,q) = x^T P_q x + 2r_q^T x + t_q$

Search for approximate value function

Linear system: $\dot{x}(t) = Ax(t) + Bu(t), \quad x(0) = x_0,$

Quadratic continuous cost: $\ell(x, u) = x^T Q x + u^T R u$, $Q \succeq 0$, $R \succ 0$

Constant switching cost: $s(x, q, q') = \xi \cdot \mathbb{I}(\{(q, q') \mid q \neq q'\})$

For each $q \in Q$, parametrize V by P_q , r_q , t_q : $V(x,q) = x^T P_q x + 2r_q^T x + t_q$

$$\begin{split} & \max_{P_q, r_q, t_q} \quad V(x_0, q_0) = x_0^T P_{q_0} x_0 + 2r_{q_0}^T x_0 + t_{q_0} \quad \text{subject to} \\ & 0 \leq \begin{bmatrix} x \\ u \\ 1 \end{bmatrix}^T \begin{bmatrix} A^T P_q + P_q A + Q & P_q B & A^T r_q \\ B^T P_q & R & B^T r_q \\ r_q^T A & r_q^T B & 0 \end{bmatrix} \begin{bmatrix} x \\ 1 \end{bmatrix} \quad \forall x \in R_q, \ \forall u \in \mathcal{U}, \ \forall q \in Q \\ & 0 \leq \begin{bmatrix} x \\ 1 \end{bmatrix}^T \begin{bmatrix} P_{q'} - P_q & r_{q'} - r_q \\ r_{q'}^T - r_q^T & t_{q'} - t_q + \xi \end{bmatrix} \begin{bmatrix} x \\ 1 \end{bmatrix} \quad \forall x \in G_e, \ \forall e \in E \\ & 0 = x_f^T P_{q_f} x_f + 2r_{q_f}^T x_f + t_{q_f} \quad \forall q_f \in F \end{split}$$

Search for approximate value function

Linear system: $\dot{x}(t) = Ax(t) + Bu(t), \quad x(0) = x_0,$

Quadratic continuous cost: $\ell(x, u) = x^T Q x + u^T R u, \quad Q \succeq 0, \quad R \succ 0$

Constant switching cost: $s(x, q, q') = \xi \cdot \mathbb{I}(\{(q, q') \mid q \neq q'\})$

For each $q \in Q$, parametrize V by P_q , r_q , t_q : $V(x,q) = x^T P_q x + 2r_q^T x + t_q$

semi-infinite optimization problem

$$\begin{aligned} \max_{P_q, r_q, t_q} & V(x_0, q_0) = x_0^T P_{q_0} x_0 + 2r_{q_0}^T x_0 + t_{q_0} & \text{subject to} \\ 0 &\leq \begin{bmatrix} x \\ u \\ 1 \end{bmatrix}^T \begin{bmatrix} A^T P_q + P_q A + Q & P_q B & A^T r_q \\ B^T P_q & R & B^T r_q \\ r_q^T A & r_q^T B & 0 \end{bmatrix} \begin{bmatrix} x \\ 1 \end{bmatrix} & \forall x \in R_q, \forall u \in \mathcal{U} \forall q \in Q \\ 0 &\leq \begin{bmatrix} x \\ 1 \end{bmatrix}^T \begin{bmatrix} P_{q'} - P_q & r_{q'} - r_q \\ r_{q'}^T - r_q^T & t_{q'} - t_q + \xi \end{bmatrix} \begin{bmatrix} x \\ 1 \end{bmatrix} & \forall x \in G_e \forall e \in E \\ 0 &= x_f^T P_{q_f} x_f + 2r_{q_f}^T x_f + t_{q_f} & \forall q_f \in F \end{aligned}$$

Solving the semi-infinite optimization problem

$$\begin{split} & \max_{P_q, r_q, t_q} \quad V(x_0, q_0) = x_0^T P_{q_0} x_0 + 2r_{q_0}^T x_0 + t_{q_0} \quad \text{subject to} \\ & 0 \leq \begin{bmatrix} x \\ u \\ 1 \end{bmatrix}^T \begin{bmatrix} A^T P_q + P_q A + Q & P_q B & A^T r_q \\ B^T P_q & R & B^T r_q \\ r_q^T A & r_q^T B & 0 \end{bmatrix} \begin{bmatrix} x \\ u \\ 1 \end{bmatrix} \quad \forall x \in R_q, \ \forall u \in \mathcal{U}, \forall q \in Q \\ & 0 \leq \begin{bmatrix} x \\ 1 \end{bmatrix}^T \begin{bmatrix} P_{q'} - P_q & r_{q'} - r_q \\ r_{q'}^T - r_q^T & t_{q'} - t_q + \xi \end{bmatrix} \begin{bmatrix} x \\ 1 \end{bmatrix} \quad \forall x \in G_e, \forall e \in E \\ & 0 = x_f^T P_{q_f} x_f + 2r_{q_f}^T x_f + t_{q_f} \quad \forall q_f \in F \end{split}$$

For *quadratically representable* R_q, G_e and U,
(1) use the S-procedure to resort to finite sufficient conditions for the semi-infinite constraints
(2) translate into a semidefinite program

Solving the semi-infinite optimization problem

$$\begin{split} & \max_{P_q, r_q, t_q} \quad V(x_0, q_0) = x_0^T P_{q_0} x_0 + 2r_{q_0}^T x_0 + t_{q_0} \quad \text{subject to} \\ & 0 \leq \begin{bmatrix} x \\ u \\ 1 \end{bmatrix}^T \begin{bmatrix} A^T P_q + P_q A + Q & P_q B & A^T r_q \\ B^T P_q & R & B^T r_q \\ r_q^T A & r_q^T B & 0 \end{bmatrix} \begin{bmatrix} x \\ u \\ 1 \end{bmatrix} \quad \forall x \in R_q, \forall u \in \mathcal{U}, \forall q \in Q \\ & 0 \leq \begin{bmatrix} x \\ 1 \end{bmatrix}^T \begin{bmatrix} P_{q'} - P_q & r_{q'} - r_q \\ r_{q'}^T - r_q^T & t_{q'} - t_q + \xi \end{bmatrix} \begin{bmatrix} x \\ 1 \end{bmatrix} \quad \forall x \in G_e, \forall e \in E \\ & 0 = x_f^T P_{q_f} x_f + 2r_{q_f}^T x_f + t_{q_f} \quad \forall q_f \in F \end{split}$$

For *quadratically representable* R_q, G_e and U,
(1) use the S-procedure to resort to finite sufficient conditions for the semi-infinite constraints
(2) translate into a semidefinite program

Solving the semi-infinite optimization problem

$$\begin{split} & \max_{P_q, r_q, t_q} \quad V(x_0, q_0) = x_0^T P_{q_0} x_0 + 2r_{q_0}^T x_0 + t_{q_0} \quad \text{subject to} \\ & 0 \leq \begin{bmatrix} x \\ u \\ 1 \end{bmatrix}^T \begin{bmatrix} A^T P_q + P_q A + Q & P_q B & A^T r_q \\ B^T P_q & R & B^T r_q \\ r_q^T A & r_q^T B & 0 \end{bmatrix} \begin{bmatrix} x \\ u \\ 1 \end{bmatrix} \quad \forall x \in R_q, \ \forall u \in \mathcal{U}, \forall q \in Q \\ & 0 \leq \begin{bmatrix} x \\ 1 \end{bmatrix}^T \begin{bmatrix} P_{q'} - P_q & r_{q'} - r_q \\ r_{q'}^T - r_q^T & t_{q'} - t_q + \xi \end{bmatrix} \begin{bmatrix} x \\ 1 \end{bmatrix} \quad \forall x \in G_e, \forall e \in E \\ & 0 = x_f^T P_{q_f} x_f + 2r_{q_f}^T x_f + t_{q_f} \quad \forall q_f \in F \end{split}$$

For *quadratically representable* R_q, G_e and U,
(1) use the S-procedure to resort to finite sufficient conditions for the semi-infinite constraints
(2) translate into a semidefinite program

Are R_q and G_e quadratically representable?

•Can be decided based on the atomic propositions in the specification.

Example

Linear quadratic system

$$A = \begin{bmatrix} 2 & -2 \\ 1 & 0 \end{bmatrix}, \quad B = \begin{bmatrix} 1 \\ 1 \end{bmatrix},$$
$$Q = I, \quad R = 1, \quad \xi = 1,$$
$$x_f = (0, 0)$$

Example

Linear quadratic system

$$A = \begin{bmatrix} 2 & -2 \\ 1 & 0 \end{bmatrix}, \quad B = \begin{bmatrix} 1 \\ 1 \end{bmatrix},$$
$$Q = I, \quad R = 1, \quad \xi = 1,$$
$$x_f = (0, 0)$$

Specification

$$(A \to \Diamond B) \land (C \to \Diamond B) \land (\Diamond A \lor \Diamond C)$$

Example

Linear quadratic system

$$A = \begin{bmatrix} 2 & -2 \\ 1 & 0 \end{bmatrix}, \quad B = \begin{bmatrix} 1 \\ 1 \end{bmatrix},$$
$$Q = I, \quad R = 1, \quad \xi = 1,$$
$$x_f = (0, 0)$$

Specification

$$(A \to \Diamond B) \land (C \to \Diamond B) \land (\Diamond A \lor \Diamond C)$$

Compare the spectra of the closedloop matrix in different modes

$$A_q^{\rm cl} = A - BR^{-1}B^T P_q^*$$
$$(A_{q_0}^{\rm cl}) = \{0.786 \pm 1.144i\}$$
$$(A_{q_4}^{\rm cl}) = \{-1 \pm i\}$$

17

 λ

 λ

Summary

No need for explicit finite abstraction (w.r.t. the dynamics)

No need for expensive reachability calculations

Summary

No need for explicit finite abstraction (w.r.t. the dynamics)

No need for expensive reachability calculations

Hope for scalability?

Scalability goal:

"Can we synthesize temporal-logicconstrained controllers for systems with **50 continuous states**?"

$$0 \leq \begin{bmatrix} x \\ u \\ 1 \end{bmatrix}^{T} \begin{bmatrix} A^{T}P_{q} + P_{q}A + Q & P_{q}B & A^{T}r_{q} \\ B^{T}P_{q} & R & B^{T}r_{q} \\ r_{q}^{T}A & r_{q}^{T}B & 0 \end{bmatrix} \begin{bmatrix} x \\ u \\ 1 \end{bmatrix}$$
$$\forall x \in R_{q}, \forall u \in \mathcal{U}, \forall q \in Q$$

Summary

No need for explicit finite abstraction (w.r.t. the dynamics)

No need for expensive reachability calculations

Hope for scalability?

Scalability goal: "Can we synthesize temporal-logicconstrained controllers for systems with 50 continuous states?" $0 \leq \begin{bmatrix} x \\ u \\ 1 \end{bmatrix}^T \begin{bmatrix} A^T P_q + P_q A + Q & P_q B & A^T r_q \\ B^T P_q & R & B^T r_q \\ r_q^T A & r_q^T B & 0 \end{bmatrix} \begin{bmatrix} x \\ u \\ 1 \end{bmatrix}$

$$\forall x \in R_a, \forall u \in \mathcal{U}, \forall q \in Q$$

Conservatism — S-procedure and basis selection

Policy is approximately optimal (bounds on sub optimality possible!)

Only co-safe temporal logic specifications (at this point)

What is next?

usual suspects	Demonstrate scalability
	Reduce conservatism
	Extend to broader classes dynamics — hybrid, nonlinear,
	Expand the family of specifications

newOpen up a broad set of new problems to ideas from controlsopportunitiesand optimization

Automata Theory Meets Approximate Dynamic Programming: Optimal Control with Temporal Logic Constraints

Ivan Papusha[†] Jie Fu^{*} Ufuk Topcu[‡] Richard

Automata Theory Meets Barrier Certificates: Temporal Logic Verification of Nonlinear Systems

Tichakorn Wongpiromsarn* Ufuk Topcu[†] Andrew Lamperski[‡]