Automata Theory Meets Approximate Dynamic Programming: Optimal Control with Temporal Logic Constraints

Ivan Papusha ${ }^{1}$ Jie Fu² Ufuk Topcu ${ }^{1}$
Richard Murray ${ }^{3}$

${ }^{1}$ University of Texas at Austin
${ }^{2}$ Worcester Polytechnic Institute
${ }^{3}$ California Institute of Technology

A Synthesis Problem

Given:

- System model
-both continuous \& discrete evolution
-actuation limitations
-modeling uncertainties \& disturbances
- Specifications
-high-level requirements
-optimality criteria

Automatically synthesize a control protocol that

- manages the system behavior and
- is provably correct with respect to the specifications and optimal.

Detour: Specifying Behavior with Temporal Logic

(only a dialect in a large family of languages)

	\wedge (and)
Propositional	$\vee($ or $)$
Logic	\rightarrow (implies)
$\mathbf{+}$	\neg (not)
Temporal	\diamond (eventually)
Operators	\square (always)
	\mathcal{U} (until)

Detour: Specifying Behavior with Temporal Logic

Traffic rules:

- No collision

$$
\square\left(\operatorname{dist}(x, \operatorname{Obs}) \geq X_{\text {safe }} \wedge \operatorname{dist}(x, \operatorname{Loc}(\operatorname{Veh})) \geq X_{\text {safe }}\right)
$$

- Obey speed limits $\square\left((x \in\right.$ Reduced_Speed_Zone $\left.) \rightarrow\left(v \leq v_{\text {reduced }}\right)\right)$
- Stay in travel lane unless blocked
- Intersection precedence \& merging, stop line, passing,...

Goals:

- Eventually visit the check point $\diamond(x=$ ck_pt $)$
- Every time check point is reached, eventually come to start $\square((x=$ ck_pt $) \rightarrow \diamond(x=$ start $))$

Detour: Specifying Behavior with Temporal Logic

(only a dialect in a large family of languages)

Propositional Logic Temporal
 \diamond (eventually)

\wedge (and)
\wedge (and)
\vee (or)
\vee (or)
\(implies)
\(implies)
\neg ~ (n o t)
\neg ~ (n o t)

VMS_global.spc - Edited

[]$(((s \cdot a 0=1 \& s \cdot a 1=1) \&(s \cdot h 0=1 \& s \cdot h 1=0 \& s \cdot h 2=0) \&(e \cdot w 0=0 \& e \cdot w 1=1)) \rightarrow((s \cdot p f 0=0 \& s \cdot p f 1=1))) \&$
[]$(((s . a 0=1 \& s . a 1=1) \&(s . h 0=0 \& s \cdot h 1=1 \& s . h 2=0) \&(e . w 0=0 \& e \cdot w 1=0)) \rightarrow((s . p f 0=1 \& s . p f 1=0))) \&$
[]$(((s . a 0=1 \& s \cdot a 1=1) \&(s \cdot h 0=0 \& s \cdot h 1=1 \& s \cdot h 2=0) \&(e \cdot w 0=1 \& e \cdot w 1=0)) \rightarrow((s \cdot p f 0=0 \quad \& \quad \mathrm{~s} \cdot \mathrm{pf} 1=1))) \&$
[]$(((s . a 0=1 \& s . a 1=1) \&(s \cdot h 0=0 \& s \cdot h 1=1 \& s \cdot h 2=0) \&(e \cdot w 0=0 \& e \cdot w 1=1)) \rightarrow((s . p f 0=1 \& s . p f 1=1))) \&$
[]$(((s . a 0=1 \& s . a 1=1) \&(s . h 0=1 \& s \cdot h 1=1 \& s \cdot h 2=0) \&(e \cdot w 0=0 \& e \cdot w 1=0)) \rightarrow((s . p f 0=0 \& s . p f 1=1))) \&$
[]$(((s . a 0=1 \& s . a 1=1) \&(s . h 0=1 \& s . h 1=1 \& s . h 2=0) \&(\mathrm{e} \cdot \mathrm{w} 0=1 \& \mathrm{e} \cdot \mathrm{w} 1=0)) \rightarrow((\mathrm{s} \cdot \mathrm{pf} 0=0$ $\& \mathrm{~s} \cdot \mathrm{pf} 1=1))) \&$
[]$(((s . a 0=1 \& s . a 1=1) \&(s \cdot h 0=1 \& s \cdot h 1=1 \& s \cdot h 2=0) \&(\mathrm{e} \cdot \mathrm{w} 0=0 \& \mathrm{e} \cdot \mathrm{w} 1=1)) \rightarrow((\mathrm{s} \cdot \mathrm{pf} 0=1 \& \mathrm{~s} \cdot \mathrm{pf} 1=1))) \&$
[]$(((s . a 0=1 \& s . a 1=1) \&(s \cdot h 0=0 \& s \cdot h 1=0 \& s \cdot h 2=1) \&(e \cdot w 0=0 \& e \cdot w 1=0)) \rightarrow((s . p f 0=0$ \& $\& \cdot p f 1=1))) \&$
[]$(((s . a 0=1 \& s . a 1=1) \&(s . h 0=0 \& s . h 1=0 \& s . h 2=1) \&(e . w 0=1 \& e . w 1=0)) \rightarrow((s . p f 0=1 \& s . p f 1=1))) \&$
[]$(((s . a 0=1 \& s . a 1=1) \&(s . h 0=0 \& s . h 1=0 \& s . h 2=1) \&(e . w 0=0 \& e . w 1=1)) \rightarrow((s . p f 0=1 \& s . p f 1=1))) \&$

s.h1=1 \& s.h2=0))) \&
 s.h1=1 \& s.h2=0))) \&
 s.h1=1 \& s.h2=0))) \&
[]$(((s . h 0=0 \& s . h 1=0 \& s . h 2=0) \&(s . a 0=1 \& s . a 1=1)) \rightarrow n e x t((s . h 0=0 \& s . h 1=0 \& s . h 2=0) \quad(s . h 0=1 \& s . h 1=0 \& s . h 2=0))) \&$

$\mathrm{s.h} 1=1 \& \mathrm{~s} \cdot \mathrm{~h} 2=0) \mid(\mathrm{s} \cdot \mathrm{h} 0=1 \& \mathrm{s.h} 1=1 \& \mathrm{~s} \cdot \mathrm{~h} 2=0))) \&$

$\mathrm{s.h} 1=1 \& \mathrm{s.h} 2=0) \mid(\mathrm{s.h} 0=1 \& \mathrm{s.h} 1=1 \& \mathrm{~s} . \mathrm{h} 2=0))) \&$

$\mathrm{s.h} 1=1 \& \mathrm{~s} \cdot \mathrm{~h} 2=0) \mid(\mathrm{s} \cdot \mathrm{h} 0=1 \& \mathrm{s.h} 1=1 \& \mathrm{~s} \cdot \mathrm{~h} 2=0))) \&$

$s . h 1=1 \& s . h 2=0))) \&$

$\mathrm{s.h} 1=1 \& \mathrm{~s} . \mathrm{h} 2=0)|(\mathrm{s} \cdot \mathrm{h} 0=1 \& \mathrm{s.h} 1=1 \& \mathrm{~s} \cdot \mathrm{~h} 2=0)|(\mathrm{s} \cdot \mathrm{h} 0=0 \& \mathrm{~s} \cdot \mathrm{~h} 1=0 \& \mathrm{~s} . \mathrm{h} 2=1))$) \&

$\mathrm{s} \cdot \mathrm{h} 1=1 \& \mathrm{~s} \cdot \mathrm{~h} 2=0$) | (s.h $0=1 \& \mathrm{~s} \cdot \mathrm{~h} 1=1 \& \mathrm{~s} \cdot \mathrm{~h} 2=0$) | (s.h $0=0$ \& $\mathrm{s} \cdot \mathrm{h} 1=0$ \& $\mathrm{s} \cdot \mathrm{h} 2=1$))) \&

$\mathrm{s} \cdot \mathrm{h} 1=1 \& \mathrm{~s} \cdot \mathrm{~h} 2=0)|(\mathrm{s} \cdot \mathrm{h} 0=1 \& \mathrm{~s} \cdot \mathrm{~h} 1=1 \& \mathrm{~s} \cdot \mathrm{~h} 2=0)|(\mathrm{s} \cdot \mathrm{h} 0=0 \& \mathrm{~s} \cdot \mathrm{~h} 1=0$ \& $\mathrm{s} \cdot \mathrm{h} 2=1))$) \&

A widely explored approach

A widely explored approach

Different views
Multi-scale models

long-
horizon
specifications
short-
horizon
specifications

$$
\begin{gathered}
x_{t+1}=f\left(x_{t}, w_{t}, u_{t}\right) \\
x \in \mathcal{X}, u \in \mathcal{U}, w \in \mathcal{W}
\end{gathered}
$$

constraints on
continuous
state + input

Synthesis method Control protocol

A widely explored approach

Different views
Multi-scale models

$x_{t+1}=f\left(x_{t}, w_{t}, u_{t}\right)$
$x \in \mathcal{X}, u \in \mathcal{U}, w \in \mathcal{W}$

Synthesis method Control protocol

Two-player, turn-based graph game

Constrained, finite-horizon optimal control

A widely explored approach

Different views
long-
horizon
specifications

Abstraction with "simulation" relation

Multi-scale models

(Finite-state) abstraction with "simulation" relation

Synthesis method Control protocol

Iterative graph search

Finite-state abstraction with "simulation" relations

Every discrete transition can be "executed" under the continuous dynamics

Finite-state abstraction with "simulation" relations

Every discrete transition can be "executed" under the continuous dynamics

Finite-state abstraction with "simulation" relations

Every discrete transition can be "executed" under the continuous dynamics

Finite-state abstraction with "simulation" relations

Every discrete transition can be "executed" under the continuous dynamics

Finite-state abstraction with "simulation" relations

Every discrete transition can be "executed" under the continuous dynamics

Finite-state abstraction with "simulation" relations

Every discrete transition can be "executed" under the continuous dynamics

Why is discretization not necessarily a good idea?

Practically:

Complex partitions are needed.

Theoretically:
Finite yet humongous discrete state spaces may be needed.2^{2}

Representations and Algorithms for Finite-State Bisimulations of Linear Discrete-Time Control Systems

An alternative to explicit discretization: no explicit discretization

An alternative to explicit discretization: no explicit discretization

Automata Theory Meets Approximate Dynamic Programming: Optimal Control with Temporal Logic Constraints

Ivan Papusha ${ }^{\dagger}$ Jie Fu* ${ }^{*}$ Ufuk Topeu ${ }^{\ddagger} \quad$ Richard M. Murray ${ }^{\dagger}$

An alternative to explicit discretization: no explicit discretization

Automata Theory Meets Approximate Dynamic Programming: Optimal Control with Temporal Logic Constraints

Ivan Papusha ${ }^{\dagger}$ Jie Fu* ${ }^{*}$ Ufuk Topeu ${ }^{\ddagger} \quad$ Richard M. Murray ${ }^{\dagger}$

TAC 2015

Automata Theory Meets Barrier Certificates: Temporal Logic Verification of Nonlinear Systems

Tichakorn Wongpiromsarn ${ }^{\star}$ Ufuk Topcu ${ }^{\dagger}$ Andrew Lamperski ${ }^{\ddagger}$

Problem statement

Given

System model

$$
\begin{aligned}
& \dot{x}=f(x, u), \quad x(0)=x_{0} \\
& x(t) \in \mathcal{X} \subseteq \mathbb{R}^{n}, u(t) \in \mathcal{U} \subseteq \mathbb{R}^{m}
\end{aligned}
$$

continuous time, continuous state with assumptions on f for existence, uniqueness and Zeno-freeness of solutions

Problem statement

Given

System model

$$
\begin{aligned}
& \dot{x}=f(x, u), \quad x(0)=x_{0} \\
& x(t) \in \mathcal{X} \subseteq \mathbb{R}^{n}, u(t) \in \mathcal{U} \subseteq \mathbb{R}^{m}
\end{aligned}
$$

$$
L(x)=\{x \in A\}
$$

Labeling function $L: \mathcal{X} \rightarrow \Sigma=2^{\mathcal{A P}}$
(what properties hold at a given state?)

Problem statement

Given

System model

$$
\begin{aligned}
& \dot{x}=f(x, u), \quad x(0)=x_{0} \\
& x(t) \in \mathcal{X} \subseteq \mathbb{R}^{n}, u(t) \in \mathcal{U} \subseteq \mathbb{R}^{m}
\end{aligned}
$$

Labeling function $L: \mathcal{X} \rightarrow \Sigma=2^{\mathcal{A P}}$
(what properties hold at a given state?)

Problem statement

Given

System model

$$
\begin{aligned}
& \dot{x}=f(x, u), \quad x(0)=x_{0} \\
& x(t) \in \mathcal{X} \subseteq \mathbb{R}^{n}, u(t) \in \mathcal{U} \subseteq \mathbb{R}^{m}
\end{aligned}
$$

Labeling function $L: \mathcal{X} \rightarrow \Sigma=2^{\mathcal{A P}}$
(what properties hold at a given state?)

$$
\begin{aligned}
& 0=t_{0}<t_{1}<\cdots<t_{N}=T \\
& L(x(t))=L\left(x\left(t_{k}\right)\right), t_{k} \leq t<t_{k+1} \\
& L\left(x\left(t_{k}^{-}\right)\right) \neq L\left(x\left(t_{k}^{+}\right)\right)
\end{aligned}
$$

"discrete" behavior: $\mathbb{B}\left(\phi\left(x_{0},[0, T], u\right)\right)=\sigma_{0} \sigma_{1} \ldots \sigma_{N-1} \in \Sigma^{*}$
with $\sigma_{k}=L\left(x\left(t_{k}\right)\right)$

Problem statement

Given

System model

$$
\begin{aligned}
& \dot{x}=f(x, u), \quad x(0)=x_{0} \\
& x(t) \in \mathcal{X} \subseteq \mathbb{R}^{n}, u(t) \in \mathcal{U} \subseteq \mathbb{R}^{m}
\end{aligned}
$$

Labeling function $L: \mathcal{X} \rightarrow \Sigma=2^{\mathcal{A P}}$
(what properties hold at a given state?)

Co-safe temporal logic specification φ
(every satisfying word has a finite "good" prefix)

A final state $\quad x_{f} \in \mathcal{X}$ and a final time T .

$\mathbb{B}\left(\phi\left(x_{0},[0, T], u\right)\right)=\sigma_{0} \sigma_{1} \ldots \sigma_{N-1} \in \Sigma^{*}$ with $\sigma_{k}=L\left(x\left(t_{k}\right)\right)$

De-tour: Automaton representation for temporal logic

Machine-interpretable representation of all words that satisfy the corresponding temporal logic formula

Deterministic finite automata are sufficient for co-safe linear temporal logic formulas

$$
(A \rightarrow \diamond B) \wedge(C \rightarrow \diamond B) \wedge(\diamond A \vee \diamond C)
$$

Problem statement (2)

Model

$$
\begin{aligned}
& \dot{x}=f(x, u), \quad x(0)=x_{0} \\
& x(t) \in \mathcal{X} \subseteq \mathbb{R}^{n}, u(t) \in \mathcal{U} \subseteq \mathbb{R}^{m}
\end{aligned}
$$

Specification φ

Problem statement (2)

Model

$\dot{x}=f(x, u), \quad x(0)=x_{0}$
$x(t) \in \mathcal{X} \subseteq \mathbb{R}^{n}, u(t) \in \mathcal{U} \subseteq \mathbb{R}^{m}$

Specification φ

Compute a control law u that minimizes

$$
\int_{0}^{T} \ell(x(\tau), u(\tau)) d \tau+\sum_{k=0}^{N} s\left(x\left(t_{k}\right), q\left(t_{k}^{-}\right), q\left(t_{k}^{+}\right)\right)
$$

subject to $x(T)=x_{f}$ and

$$
\mathbb{B}\left(\phi\left(x_{0},[0, T], u\right)\right) \in \mathcal{L}\left(\mathcal{A}_{\varphi}\right)
$$

Related work

$$
\int_{0}^{T} \ell(x(\tau), u(\tau)) d \tau
$$

$$
\begin{aligned}
& \dot{x}=f(x, u), \quad x(0)=x_{0} \\
& x(t) \in \mathcal{X} \subseteq \mathbb{R}^{n}, u(t) \in \mathcal{U} \subseteq \mathbb{R}^{m}
\end{aligned}
$$

Temporal logic specification
$(A \rightarrow \diamond B) \wedge(C \rightarrow \diamond B) \wedge(\diamond A \vee \diamond C)$
restrict to simple specifications
make it a formal methods problem

Related work

$$
\int_{0}^{T} \ell(x(\tau), u(\tau)) d \tau
$$

$$
\begin{aligned}
& \dot{x}=f(x, u), \quad x(0)=x_{0} \\
& x(t) \in \mathcal{X} \subseteq \mathbb{R}^{n}, u(t) \in \mathcal{U} \subseteq \mathbb{R}^{m}
\end{aligned}
$$

Temporal logic specification
$(A \rightarrow \diamond B) \wedge(C \rightarrow \diamond B) \wedge(\diamond A \vee \diamond C)$

restrict to simple specifications

Hedlund \& Rantzer
(optimal control for hybrid systems

+ convex dynamic programming)
Xu \& Antsaklis
(optimal control for switched systems)
Kariotoglou, et al.
(approximate dynamic programming for stochastic reachability)
make it a formal methods problem

Habets \& Belta

Wongpiromsarn, et al.
Wolff, et al.
Fainekos, et al.

Product hybrid system

The problem can be formulated as a dynamic programming problem over a product hybrid system:

$$
\langle Q, \mathcal{X}, E, f, R, G\rangle
$$

Product hybrid system

The problem can be formulated as a dynamic programming problem over a product hybrid system:

Product hybrid system

The problem can be formulated as a dynamic programming problem over a product hybrid system:

-The continuous state x evolves according to the vector field.
-The evolution of the discrete state q is governed by the automaton.

- A discrete transition is triggered when x crosses a boundary between two labeled regions.

Product hybrid system

The problem can be formulated as a dynamic programming problem over a product hybrid system:

-The continuous state x evolves according to the vector field.

- The evolution of the discrete state q is governed by the automaton.
-A discrete transition is triggered when x crosses a boundary between two labeled regions.

Dynamic programming formulation

Hybrid Hamilton-Jacobi-Bellman equations over the product space

V^{*} : optimal cost-to-go subject to the specifications

$$
\begin{array}{r}
0=\min _{u \in \mathcal{U}}\left\{\frac{\partial V^{\star}(x, q)}{\partial x} \cdot f(x, u)+\ell(x, u)\right\} \\
\forall x \in R_{q}, \forall q \in Q \\
V^{\star}(x, q)=\min _{q^{\prime}}\left\{V^{\star}\left(x, q^{\prime}\right)+s\left(x, q, q^{\prime}\right)\right\} \\
\forall x \in G_{e}, \forall e=\left(q, \sigma, q^{\prime}\right) \in E
\end{array}
$$

Dynamic programming formulation

Hybrid Hamilton-Jacobi-Bellman equations over the product space

V*: optimal cost-to-go subject to the specifications
While the labels remain constant:

$$
\begin{array}{r}
0=\min _{u \in \mathcal{U}}\left\{\frac{\partial V^{\star}(x, q)}{\partial x} \cdot f(x, u)+\ell(x, u)\right\} \\
\forall x \in R_{q}, \forall q \in Q
\end{array}
$$

Over discrete transitions:

$$
\begin{array}{r}
V^{\star}(x, q)=\min _{q^{\prime}}\left\{V^{\star}\left(x, q^{\prime}\right)+s\left(x, q, q^{\prime}\right)\right\} \\
\forall x \in G_{e}, \forall e=\left(q, \sigma, q^{\prime}\right) \in E
\end{array}
$$

Dynamic programming formulation

Hybrid Hamilton-Jacobi-Bellman equations over the product space

V^{*} : optimal cost-to-go subject to the specifications
While the labels remain constant:

$$
\begin{array}{r}
0=\min _{u \in \mathcal{U}}\left\{\frac{\partial V^{\star}(x, q)}{\partial x} \cdot f(x, u)+\ell(x, u)\right\} \\
\forall x \in R_{q}, \forall q \in Q
\end{array}
$$

Over discrete transitions:
$V^{\star}(x, q)=\min _{q^{\prime}}\left\{V^{\star}\left(x, q^{\prime}\right)+s\left(x, q, q^{\prime}\right)\right\}$

$$
\forall x \in G_{e}, \forall e=\left(q, \sigma, q^{\prime}\right) \in E
$$

At the "terminal" state:
$0=V^{\star}\left(x_{f}, q_{f}\right), \quad \forall q_{f} \in F$

(Toward computable) lower bounds on the optimal cost

$$
\begin{aligned}
& 0 \leq \frac{\partial V(x, q)}{\partial x} \cdot f(x, u)+\ell(x, u) \quad \forall x \in R_{q}, \forall u \in \mathcal{U}, \forall q \in Q \\
& 0 \leq V\left(x, q^{\prime}\right)-V(x, q)+s\left(x, q, q^{\prime}\right) \quad \forall x \in G_{e}, \forall e=\left(q, \sigma, q^{\prime}\right) \in E \\
& 0=V\left(x_{f}, q_{f}\right), \quad \forall q_{f} \in F
\end{aligned}
$$

(Toward computable) lower bounds on the optimal cost

$0 \leq \frac{\partial V(x, q)}{\partial x} \cdot f(x, u)+\ell(x, u) \quad \forall x \in R_{q}, \forall u \in \mathcal{U}, \forall q \in Q$
$0 \leq V\left(x, q^{\prime}\right)-V(x, q)+s\left(x, q, q^{\prime}\right) \quad \forall x \in G_{e}, \forall e=\left(q, \sigma, q^{\prime}\right) \in E$
$0=V\left(x_{f}, q_{f}\right), \quad \forall q_{f} \in F$
V : approximate value function
A function V that satisfies the above conditions is an under-estimator for the optimal value function V^{*} :

$$
V\left(x_{0}, q_{0}\right) \leq V^{\star}\left(x_{0}, q_{0}\right)
$$

(Toward computable) lower bounds on the optimal cost

$$
\begin{aligned}
& 0 \leq \frac{\partial V(x, q)}{\partial x} \cdot f(x, u)+\ell(x, u) \quad \forall x \in R_{q}, \forall u \in \mathcal{U}, \forall q \in Q \\
& \text { compare to } \quad 0=\min _{u \in \mathcal{U}}\left\{\frac{\partial V^{\star}(x, q)}{\partial x} \cdot f(x, u)+\ell(x, u)\right\} \quad \forall x \in R_{q}, \forall q \in Q
\end{aligned}
$$

$$
\begin{aligned}
& 0 \leq V\left(x, q^{\prime}\right)-V(x, q)+s\left(x, q, q^{\prime}\right) \quad \forall x \in G_{e}, \forall e=\left(q, \sigma, q^{\prime}\right) \in E \\
& \text { compare to } V^{\star}(x, q)=\min _{q^{\prime}}\left\{V^{\star}\left(x, q^{\prime}\right)+s\left(x, q, q^{\prime}\right)\right\} \quad \forall x \in G_{e}, \forall e=\left(q, \sigma, q^{\prime}\right) \in E
\end{aligned}
$$

$0=V\left(x_{f}, q_{f}\right), \quad \forall q_{f} \in F$

V : approximate value function

A function V that satisfies the above conditions is an under-estimator for the optimal value function V^{*} :

$$
V\left(x_{0}, q_{0}\right) \leq V^{\star}\left(x_{0}, q_{0}\right)
$$

(Toward computable) lower bounds on the optimal cost

$$
\begin{aligned}
& 0 \leq \frac{\partial V(x, q)}{\partial x} \cdot f(x, u)+\ell(x, u) \quad \forall x \in R_{q}, \forall u \in \mathcal{U}, \forall q \in Q \\
& \text { compare to } \quad 0=\min _{u \in \mathcal{U}}\left\{\frac{\partial V^{\star}(x, q)}{\partial x} \cdot f(x, u)+\ell(x, u)\right\} \quad \forall x \in R_{q}, \forall q \in Q
\end{aligned}
$$

$$
\begin{aligned}
& 0 \leq V\left(x, q^{\prime}\right)-V(x, q)+s\left(x, q, q^{\prime}\right) \quad \forall x \in G_{e}, \forall e=\left(q, \sigma, q^{\prime}\right) \in E \\
& \text { compare to } V^{\star}(x, q)=\min _{q^{\prime}}\left\{V^{\star}\left(x, q^{\prime}\right)+s\left(x, q, q^{\prime}\right)\right\} \quad \forall x \in G_{e}, \forall e=\left(q, \sigma, q^{\prime}\right) \in E
\end{aligned}
$$

$0=V\left(x_{f}, q_{f}\right), \quad \forall q_{f} \in F$

V : approximate value function

A function V that satisfies the above conditions is an under-estimator for the optimal value function V^{*} :

$$
V\left(x_{0}, q_{0}\right) \leq V^{\star}\left(x_{0}, q_{0}\right)
$$

Intuition from purely discrete version:

$$
\begin{aligned}
& V^{*}=\mathbb{T} V^{*} \\
& V \leq \mathbb{T} V \Rightarrow V \leq V^{*}
\end{aligned}
$$

Approximate value function and approximately optimal control law

Parametrize V with pre-specified basis functions ϕ :

$$
V(x, q)=\sum_{i=1}^{n_{q}} w_{i, q} \phi_{i, q}(x) \quad \begin{aligned}
& \text { basis: } \\
& \text { function of } x \\
& \text { indexed by } q
\end{aligned}
$$

Search for approximate value function that maximizes $V\left(x_{0}, q_{0}\right)$.
(one of the many scalarizations)

Approximate value function and approximately optimal control law

Parametrize V with pre-specified basis functions ϕ :

$$
V(x, q)=\sum_{i=1}^{n_{q}} w_{i, q} \phi_{i, q}(x) \quad \begin{aligned}
& \text { basis: } \\
& \text { function of } x \\
& \text { indexed by } q
\end{aligned}
$$

Search for approximate value function that maximizes $V\left(x_{0}, q_{0}\right)$.
(one of the many scalarizations)

Given V, an approximately optimal control law:

$$
u(x, q)=\arg \min _{u \in \mathcal{U}}\left\{\frac{\partial V(x, q)}{\partial x} \cdot f(x, u)+\ell(x, u)\right\}
$$

Mode switchings are autonomous, driven by the evolution of x.

Search for approximate value function

Linear system: $\quad \dot{x}(t)=A x(t)+B u(t), \quad x(0)=x_{0}$,
Quadratic continuous cost: $\quad \ell(x, u)=x^{T} Q x+u^{T} R u, \quad Q \succeq 0, \quad R \succ 0$
Constant switching cost: $s\left(x, q, q^{\prime}\right)=\xi \cdot \mathbb{I}\left(\left\{\left(q, q^{\prime}\right) \mid q \neq q^{\prime}\right\}\right)$
For each $q \in Q$, parametrize V by $P_{q}, r_{q}, t_{q}: V(x, q)=x^{T} P_{q} x+2 r_{q}^{T} x+t_{q}$

Search for approximate value function

Linear system: $\quad \dot{x}(t)=A x(t)+B u(t), \quad x(0)=x_{0}$,
Quadratic continuous cost: $\quad \ell(x, u)=x^{T} Q x+u^{T} R u, \quad Q \succeq 0, \quad R \succ 0$
Constant switching cost: $s\left(x, q, q^{\prime}\right)=\xi \cdot \mathbb{I}\left(\left\{\left(q, q^{\prime}\right) \mid q \neq q^{\prime}\right\}\right)$
For each $q \in Q$, parametrize V by $P_{q}, r_{q}, t_{q}: V(x, q)=x^{T} P_{q} x+2 r_{q}^{T} x+t_{q}$

$$
\begin{aligned}
& \max _{P_{q}, r_{q}, t_{q}} V\left(x_{0}, q_{0}\right)=x_{0}^{T} P_{q_{0}} x_{0}+2 r_{q_{0}}^{T} x_{0}+t_{q_{0}} \quad \text { subject to } \\
& 0 \leq\left[\begin{array}{l}
x \\
u \\
1
\end{array}\right]^{T}\left[\begin{array}{ccc}
A^{T} P_{q}+P_{q} A+Q & P_{q} B & A^{T} r_{q} \\
B^{T} P_{q} & R & B^{T} r_{q} \\
r_{q}^{T} A & r_{q}^{T} B & 0
\end{array}\right]\left[\begin{array}{l}
x \\
u \\
1
\end{array}\right] \quad \forall x \in R_{q} \\
& 0 \leq\left[\begin{array}{c}
x \\
1
\end{array}\right]^{T}\left[\begin{array}{cc}
P_{q^{\prime}}-P_{q} & r_{q^{\prime}}-r_{q} \\
r_{q^{\prime}}^{T}-r_{q}^{T} & t_{q^{\prime}}-t_{q}+\xi
\end{array}\right]\left[\begin{array}{c}
x \\
1
\end{array}\right] \quad \forall x \in G_{e}, \forall e \in E \\
& 0=x_{f}^{T} P_{q_{f}} x_{f}+2 r_{q_{f}}^{T} x_{f}+t_{q_{f}} \quad \forall q_{f} \in F
\end{aligned}
$$

Search for approximate value function

Linear system: $\quad \dot{x}(t)=A x(t)+B u(t), \quad x(0)=x_{0}$,
Quadratic continuous cost: $\quad \ell(x, u)=x^{T} Q x+u^{T} R u, \quad Q \succeq 0, \quad R \succ 0$
Constant switching cost: $s\left(x, q, q^{\prime}\right)=\xi \cdot \mathbb{I}\left(\left\{\left(q, q^{\prime}\right) \mid q \neq q^{\prime}\right\}\right)$
For each $q \in Q$, parametrize V by $P_{q}, r_{q}, t_{q}: V(x, q)=x^{T} P_{q} x+2 r_{q}^{T} x+t_{q}$

semi-infinite optimization problem

$$
\begin{aligned}
& \max _{P_{q}, r_{q}, t_{q}} V\left(x_{0}, q_{0}\right)=x_{0}^{T} P_{q_{0}} x_{0}+2 r_{q_{0}}^{T} x_{0}+t_{q_{0}} \quad \text { subject to } \\
& 0 \leq\left[\begin{array}{c}
x \\
u \\
1
\end{array}\right]^{T}\left[\begin{array}{ccc}
A^{T} P_{q}+P_{q} A+Q & P_{q} B & A^{T} r_{q} \\
B^{T} P_{q} & R & B^{T} r_{q} \\
r_{q}^{T} A & r_{q}^{T} B & 0
\end{array}\right]\left[\begin{array}{c}
x \\
u \\
1
\end{array}\right] \quad \forall x \in R_{q}, \forall u \in \mathcal{U} . \\
& 0 \leq\left[\begin{array}{c}
x \\
1
\end{array}\right]^{T}\left[\begin{array}{cc}
P_{q^{\prime}}-P_{q} & r_{q^{\prime}}-r_{q} \\
r_{q^{\prime}}^{T}-r_{q}^{T} & t_{q^{\prime}}-t_{q}+\xi
\end{array}\right]\left[\begin{array}{c}
x \\
1
\end{array}\right] \quad \forall x \in G_{e} . \forall e \in E \\
& 0=x_{f}^{T} P_{q_{f}} x_{f}+2 r_{q_{f}}^{T} x_{f}+t_{q_{f}} \quad \forall q_{f} \in F
\end{aligned}
$$

Solving the semi-infinite optimization problem

$$
\begin{aligned}
& \max _{P_{q}, r_{q}, t_{q}} V\left(x_{0}, q_{0}\right)=x_{0}^{T} P_{q_{0}} x_{0}+2 r_{q_{0}}^{T} x_{0}+t_{q_{0}} \quad \text { subject to } \\
& 0 \leq\left[\begin{array}{l}
x \\
u \\
1
\end{array}\right]^{T}\left[\begin{array}{ccc}
A^{T} P_{q}+P_{q} A+Q & P_{q} B & A^{T} r_{q} \\
B^{T} P_{q} & R & B^{T} r_{q} \\
r_{q}^{T} A & r_{q}^{T} B & 0
\end{array}\right]\left[\begin{array}{l}
x \\
u \\
1
\end{array}\right] \forall x \in R_{q}, \forall u \in \mathcal{U} . \forall q \in Q \\
& 0 \leq\left[\begin{array}{l}
x \\
1
\end{array}\right]^{T}\left[\begin{array}{cc}
P_{q^{\prime}}-P_{q} & r_{q^{\prime}}-r_{q} \\
r_{q^{\prime}}^{T}-r_{q}^{T} & t_{q^{\prime}}-t_{q}+\xi
\end{array}\right]\left[\begin{array}{l}
x \\
1
\end{array}\right] \quad \forall x \in G_{e} . \forall e \in E \\
& 0=x_{f}^{T} P_{q_{f}} x_{f}+2 r_{q_{f}}^{T} x_{f}+t_{q_{f}} \quad \forall q_{f} \in F
\end{aligned}
$$

For quadratically representable R_{q}, G_{e} and U,
(1) use the S-procedure to resort to finite sufficient conditions for the semi-infinite constraints
(2) translate into a semidefinite program

Solving the semi-infinite optimization problem

$$
\begin{aligned}
& \max _{P_{q}, r_{q}, t_{q}} V\left(x_{0}, q_{0}\right)=x_{0}^{T} P_{q_{0}} x_{0}+2 r_{q_{0}}^{T} x_{0}+t_{q_{0}} \quad \text { subject to } \\
& 0 \leq\left[\begin{array}{l}
x \\
u \\
1
\end{array}\right]^{T}\left[\begin{array}{ccc}
A^{T} P_{q}+P_{q} A+Q & P_{q} B & A^{T} r_{q} \\
B^{T} P_{q} & R & B^{T} r_{q} \\
r_{q}^{T} A & r_{q}^{T} B & 0
\end{array}\right]\left[\begin{array}{l}
x \\
u \\
1
\end{array}\right] \forall x \in R_{q}, \forall u \in \mathcal{U} . \quad \forall q \in Q \\
& 0 \leq\left[\begin{array}{l}
x \\
1
\end{array}\right]^{T}\left[\begin{array}{cc}
P_{q^{\prime}}-P_{q} & r_{q^{\prime}}-r_{q} \\
r_{q^{\prime}}^{T}-r_{q}^{T} & t_{q^{\prime}}-t_{q}+\xi
\end{array}\right]\left[\begin{array}{l}
x \\
1
\end{array}\right] \quad \forall x \in G_{e} . \forall e \in E \\
& 0=x_{f}^{T} P_{q_{f}} x_{f}+2 r_{q_{f}}^{T} x_{f}+t_{q_{f}} \quad \forall q_{f} \in F
\end{aligned}
$$

"S-procedure"
For quadratically representable R_{q}, G_{e} and U,
(1) use the S-procedure to resort to finite sufficient conditions for the semi-infinite constraints
(2) translate into a semidefinite program

$$
\begin{gathered}
M_{0}, M_{1}: \mathbb{R}^{n} \rightarrow \mathbb{R} \\
M_{1} \geq 0 \Rightarrow M_{0} \geq 0 \\
\Uparrow \\
\exists \lambda \geq 0 \text { s.t. } \\
M_{0}(\zeta)-\lambda M_{1}(\zeta) \geq 0 \forall \zeta
\end{gathered}
$$

Solving the semi-infinite optimization problem

$$
\begin{aligned}
& \max _{P_{q}, r_{q}, t_{q}} V\left(x_{0}, q_{0}\right)=x_{0}^{T} P_{q_{0}} x_{0}+2 r_{q_{0}}^{T} x_{0}+t_{q_{0}} \quad \text { subject to } \\
& 0 \leq\left[\begin{array}{l}
x \\
u \\
1
\end{array}\right]^{T}\left[\begin{array}{ccc}
A^{T} P_{q}+P_{q} A+Q & P_{q} B & A^{T} r_{q} \\
B^{T} P_{q} & R & B^{T} r_{q} \\
r_{q}^{T} A & r_{q}^{T} B & 0
\end{array}\right]\left[\begin{array}{l}
x \\
u \\
1
\end{array}\right] \forall x \in R_{q}, \forall u \in \mathcal{U} . \\
& \text { P } \in Q \\
& 0 \leq\left[\begin{array}{l}
x \\
1
\end{array}\right]^{T}\left[\begin{array}{cc}
P_{q^{\prime}}-P_{q} & r_{q^{\prime}}-r_{q} \\
r_{q^{\prime}}^{T}-r_{q}^{T} & t_{q^{\prime}}-t_{q}+\xi
\end{array}\right]\left[\begin{array}{l}
x \\
1
\end{array}\right] \quad \forall x \in G_{e} . \forall e \in E \\
& 0=x_{f}^{T} P_{q_{f}} x_{f}+2 r_{q_{f}}^{T} x_{f}+t_{q_{f}} \quad \forall q_{f} \in F
\end{aligned}
$$

For quadratically representable R_{q}, G_{e} and U,
(1) use the S-procedure to resort to finite sufficient conditions for the semi-infinite constraints
(2) translate into a semidefinite program

Are R_{q} and G_{e} quadratically representable?
-Can be decided based on the atomic propositions in the specification.

Example

Linear quadratic system

$$
\begin{aligned}
& A=\left[\begin{array}{cc}
2 & -2 \\
1 & 0
\end{array}\right], \quad B=\left[\begin{array}{l}
1 \\
1
\end{array}\right], \\
& Q=I, \quad R=1, \quad \xi=1, \\
& x_{f}=(0,0)
\end{aligned}
$$

Example

Linear quadratic system

$$
\begin{aligned}
& A=\left[\begin{array}{cc}
2 & -2 \\
1 & 0
\end{array}\right], \quad B=\left[\begin{array}{l}
1 \\
1
\end{array}\right], \\
& Q=I, \quad R=1, \quad \xi=1, \\
& x_{f}=(0,0)
\end{aligned}
$$

Specification

$(A \rightarrow \diamond B) \wedge(C \rightarrow \diamond B) \wedge(\diamond A \vee \diamond C)$

Example

Linear quadratic system

$$
\begin{aligned}
& A=\left[\begin{array}{cc}
2 & -2 \\
1 & 0
\end{array}\right], \quad B=\left[\begin{array}{l}
1 \\
1
\end{array}\right], \\
& Q=I, \quad R=1, \quad \xi=1, \\
& x_{f}=(0,0)
\end{aligned}
$$

Specification

$(A \rightarrow \diamond B) \wedge(C \rightarrow \diamond B) \wedge(\diamond A \vee \diamond C)$

Compare the spectra of the closedloop matrix in different modes

$$
\begin{aligned}
& A_{q}^{\mathrm{cl}}=A-B R^{-1} B^{T} P_{q}^{\star} \\
\lambda\left(A_{q_{0}}^{\mathrm{cl}}\right) & =\{0.786 \pm 1.144 i\} \\
\lambda\left(A_{q_{4}}^{\mathrm{cl}}\right) & =\{-1 \pm i\}
\end{aligned}
$$

Summary

No need for explicit finite abstraction (w.r.t. the dynamics)

No need for expensive reachability calculations

Summary

No need for explicit finite abstraction (w.r.t. the dynamics)

No need for expensive reachability calculations

Hope for scalability?

Scalability goal:

"Can we synthesize temporal-logicconstrained controllers for systems with 50 continuous states?"

$$
\begin{array}{r}
0 \leq\left[\begin{array}{l}
x \\
u \\
1
\end{array}\right]^{T}\left[\begin{array}{ccc}
A^{T} P_{q}+P_{q} A+Q & P_{q} B & A^{T} r_{q} \\
B^{T} P_{q} & R & B^{T} r_{q} \\
r_{q}^{T} A & r_{q}^{T} B & 0
\end{array}\right]\left[\begin{array}{l}
x \\
u \\
1
\end{array}\right] \\
\forall x \in R_{q}, \forall u \in \mathcal{U}, \forall q \in Q
\end{array}
$$

Summary

No need for explicit finite abstraction (w.r.t. the dynamics)

No need for expensive reachability calculations

Hope for scalability?

Scalability goal:

"Can we synthesize temporal-logicconstrained controllers for systems with 50 continuous states?"

$$
\begin{array}{r}
0 \leq\left[\begin{array}{c}
x \\
u \\
1
\end{array}\right]^{T}\left[\begin{array}{ccc}
A^{T} P_{q}+P_{q} A+Q & P_{q} B & A^{T} r_{q} \\
B^{T} P_{q} & R & B^{T} r_{q} \\
r_{q}^{T} A & r_{q}^{T} B & 0
\end{array}\right]\left[\begin{array}{l}
x \\
u \\
1
\end{array}\right] \\
\forall x \in R_{q}, \forall u \in \mathcal{U}, \forall q \in Q
\end{array}
$$

Conservatism - S-procedure and basis selection
Policy is approximately optimal (bounds on sub optimality possible!)
Only co-safe temporal logic specifications (at this point)

What is next?

Demonstrate scalability
usual suspects
new opportunities

Reduce conservatism
Extend to broader classes dynamics - hybrid, nonlinear,...
Expand the family of specifications

Open up a broad set of new problems to ideas from controls and optimization

Automata Theory Meets Approximate Dynamic Programming:
Optimal Control with Temporal Logic Constraints
Ivan Papusha ${ }^{\dagger}$ Jie Fu* Ufuk Topcu ${ }^{\ddagger}$ Richard Automata Theory Meets Barrier Certificates:
Temporal Logic Verification of Nonlinear Systems

[^0]
[^0]: Tichakorn Wongpiromsarn ${ }^{\star}$ Ufuk Topcu ${ }^{\dagger}$ Andrew Lamperski ${ }^{\ddagger}$

