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Abstract— We investigate the synthesis of optimal controllers To address the issues of scalability, correctness, and op-
for continuous-time and continuous-state systems under tem- timality, Wolff et al. [14], [15] have formulated the contro
poral logic specifications. The specification is expressed as aproblem directly as a mixed-integer linear program on the

deterministic, finite automaton (the specification automaton) ¢ iabl hich id finit bstracti Thi
with transition costs, and the optimal system behavior is Systém variables, which avoids a Tinite abstraction. IS

captured by a cost function that is integrated over time. We €ncoding method applies to a fragment of Linear Temporal
construct a dynamic programming problem over the product Logic (LTL), while being sensitive to the accuracy of time
of the underlying continuous-time, continuous-state system and discretization. Earlier attempts at restricting LTL seizn
the discrete specification automaton. To solve this dynamic v, \yori with continuous states also relied on a “flat” subset
program, we propose controller synthesis algorithms based . . . .
on approximate dynamic programming (ADP) for both linear of LTL [16], res.ultlng 'n. th? ConStrUCt_'Onl of a .hyb”d
and nonlinear systems under temporal logic constraints. We automaton, the size of which is exponential in the size of the
argue that ADP allows treating the synthesis problem directly, specification formula. More recent work has concentrated on
without forming expensive discrete abstractions. We show that, ysing sum-of-squares techniques and barrier certifica@s [
for linear systems under co-safe temporal logic constraints, the This paper exploits the idea that continuous-time and
ADP solution reduces to a single semidefinite program. . . i
continuous-state systems constrained by LTL specification
can be viewed as a hybrid dynamical system through an
augmentation of the continuous state space with the dis-
In this work, we address the problem of optimal controFrete states of the specification automaton. The resulting
of dynamical systems under temporal logic specification®ptimality conditions consist of mixed continuous-digere
Dynamical systems of interest to control are typically tefit Hamilton—Jacobi-Bellman (HJB) equations, which are dif-
as differential equations on a continuous state space,imith ficult to solve in general. Therefore, approximate dynamic
puts that can take on a continuum of values over a continuo@§0gramming (ADP) can be used to approximate the value
time interval. However, temporal logic constraints thainpie ~ function, and to give an approximate policy. If this approx-
decidable synthesis must work with a finite or countablémate policy satisfies the logical specifications (checkgd b
parameterization of time and space. As a result, a contréimulation), then we can give bounds on the policy’s sub-
designer must either forgo the continuous dynamics, crea@®timality with respect to the objective. Otherwise, a more
a discrete abstraction, or somehow re-express the tempogpressive basis must be chosen. The optimization-based
constraints within their optimal control framework. ADP framework provides considerable freedom to choose a
Abstraction-based, hierarchical, and symbolic contrdlelevant basis representation, although we demonstrateth
methods have been proposed for continuous systems un@é@dratic basis is often sufficient. Under mild assumptions
temporal logic constraints [1-8]. These classes of method@§ optimal policy that satisfies the specifications can be
involve three general steps: 1) abstracting the dynamicegcovered if the basis is complete, see [18, Thm. 3], [19].
system as a discrete finite-state system, 2) synthesizing aOUr dynamic program makes use of a finite acceptance
discrete control law using a product of the specification angendition of the specification automaton by effectivelyatre
the abstraction, and 3) compatibly implementing the discreing controller synthesis as a kind of shortest path problken.
control law on the original continuous system. Approximaté result, our framework is also limited to a subset of LTL for
abstractions can be developed by reachability-based comgi$ temporal specification language—in this case the fragmen
tational methods, counter-example guided abstractionerefi 1S calledco-safeLTL [20]. Importantly, co-safe LTL admits
ment, and sampling-based methods [1], [9-13]. However, i OWn automaton construction method, e.g., [21], which is
is well-known that the abstraction process is computatipna more efficient than Bchi automata constructions for general
expensive. In addition, it is difficult to ensure the optiityal LTL [22]. An earlier similar proposed architecture used
of a control policy designed at the abstraction level witdhe product of a co-safe LTL specification automaton and
respect to a given continuous cost function. a discrete abstraction of nonlinear robot dynamics with a
sampling-based planner [23]. By comparison, we treat the
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I. INTRODUCTION



We state the specific problem and describe the co-safeGiven a co-safe LTL specificatiop over the set of atomic
LTL fragment in §ll. We define the product between thepropositionsAP, there exists a corresponding deterministic
continuous-time, continuous-space dynamics and thealescr finite-state automaton (DFA), = (Q, X, 4, o, F'), whereQ
automaton corresponding to the co-safe LTL specificatiofis a finite set of states (modeg),= 247 is a finite alphabet,
and then write down the dynamic program §il. We §: Q x ¥ — @ is a deterministictransition function such
describe an optimization-based framework for ADP in thishat when the symbat € ¥ is read at state, the automaton
context in§lV, and give examples of how to implement themakes a deterministic transition to state, o) = ¢/, g0 € Q
optimization problem as a semidefinite program for lineais the initial state, and” C @ is a set of final, oraccepting

systems ingV. We conclude in§VI. states. The transition function is extended to a sequence of
symbols, or aword w = ooy ... € ¥*, in the usual way:
Il. PROBLEM DESCRIPTION d(q,00v) = 6((q,00),v) for op € ¥ andv € £*. We say
We consider a continuous-time and continuous-state d{?at the finite wordw satisfies, if and only if 6(qo, w) €
namical system oR™. This system is given by . The set of words satisfying is the languageof the
automatonA,,, denotedC(A,).
&= f(z,u), z(0) =z, 1) The discrete behavior encodes the sequence of labels

visited by the state as it moves along its continuous traigct
wherex(t) € & C R™ andu(t) € U C R™ are the state  gpecifically, the atomic propositions are evaluated only at
and control signals at time For simplicity, we restricf 1o he times when the label changes value. Thus a trajectory
be a Lipschitz continuous function ¢f, «), and the control (0, [0, T],u) satisfies an LTL specificatiop if and only

input u to be a piecewise right-continuous function of timejs its discrete behavior is in the languagéA,,). The optimal
with finitely many discontinuities on any finite time intetva ntrol problem is formulated as follows.

These conditions are not always required, but they ensure

the existence and uniqueness of solutions, and are meant¥@blem 1. Consider the systerfi), a co-safe LTL specifi-

prevent Zeno behavior. cation ¢, and a final statery € X'. Design a control lawu
The system (1) is constrained to satisfy a specification dhat minimizes the cost function

the discrete behavior obtained from its continuous trajgct T N

First, let AP be a finite set of atomic propositions, which are .y — / Ua(r),u()dr + > s(@(te), qlty ), a(t) (2)

logical predicates that hold true whet(t) is in a particular 0 5—0

region. Then, define a labeling functioh : & — ¥ =

24P which maps a continuous staie € X to the finite

subset of atomic propositions that evaluate to true. athis

function partitions the continuous spadginto regions that Here,/ : X x U — R is a continuous loss function, and

share the same truth valuesAP. The labeling function also s : X x Q@ x @ — R is the cost to transition between two

links the continuous system with itBscrete behaviarln the  states of the automaton whenever such a transition is aflowe

following definition, ¢(xo, [0,77],u) refers to the trajectory The final state:(7') = z ¢ is also specified. Similar problems

of the continuous system with initial conditian, under the have been studied in existing work [3], [8], [13], [15], [26—

control inputu(t) over the time intervalo, T7. 28]. The novelty of our approach is twofold. First, we show

that this co-safe LTL problem can be cast as an optimal

subject to the constraints thad(¢(xo, [0,7],u)) € L(A,)
andz(T) = xy.

Definition. Letto, ;... ty be times, such that hybrid control problem, and second, we use approximate
e 0=to<ti < ---<ty=T, dynamic programming to synthesize a suboptimal controller
o L(z(t)) = L(z(tk)), tk <t <lpt1, k=0,...,N, with guaranteed performance bounds.
o L(z(t;)) # L(x(t})), k=0,...,N.

The discrete behavigrdenoted B(¢(xo, [0, 7], u)), is the l1l. PRODUCT FORMULATION

discrete wordogo ...on—1 € ¥, whereoy, = L(z(ty)). To solve Problem 1, we first augment the continuous state

spaceX with the discrete state spacg of the specification
automatonA,, to obtain a hybrid system. The construction of
él@ for a specific formulap can be automated with existing
tools [21], [22]. We show that the optimal control problem
constrained by a co-safe LTL specificatignis a dynamic

A specification on the discrete behavior can be written as
co-safe LTL formula over the finite set of atomic proposition
(for a comprehensive description of the syntax and sen&nti
of LTL, the reader is referred to [24], [25]). A co-safe LTL
formula is an LTL formula where every satisfying word .
has a finite good prefix[20]. We restrict to such formulas prograr.nmlng.problem over the produc'F spg’ée< Q.
to take advantage of the expressiveness of temporal lo ic'_n this seting, the hybrid state_ at timeis an o_rdered
for specifying optimal control problems without imposing”a'" (x(t),q(t) € A x Q. Evolution of the_c_ontmuous-
infinite Blichi acceptance conditions [22]. We give exampleﬁtate compqnenlr(t) S governeq by the original sygtem
of appropriate specifications BV. ow (1), while evolution Qf the dlscrgtg c.omponqmt) is

governed by the appropriate deterministic transition & th
1Given a wordw € $* andv € *, v is a prefix ofw if and only if  SPecification automaton. Such a transition is initiated nwhe
w = vu for someu € ¥*. The wordu is called the suffix ofw. the continuous state crosses a boundary between two labeled



regions. Specifically, we consider the following product
hybrid system:

Definition. The product systenH = (Q, X, E, f,R,G) is
an internally forced hybrid system, where

« Q) is the set of discrete states (modes)4,

« X C R" is the set of continuous states,

« £ CQ xXxQIis a set of discrete transitions, where

e=1(q,0,¢') € Eifand only if§(¢q,0) = ¢,

o« f: X xU — R™is the continuous vector field given
by (1),
R ={R, | q € Q} is a collection of regions, where

Rq_y(7 = {g; cX ‘ gq’ €qQ: (q’ﬁ7 q) €F, Fig. 1. Finite state interpretation of HIB conditions (F)-(

and L(z) =0}, ¢€Q,0€X, graph, where nodes with the same label are treated together
R — U R 1€Q apd the Weigh'gs are the incremen.tal coits, u)dt or the
1 et e ’ discrete transition costs(z, ¢,¢') (Fig. 1). As long as the
) . continuous state evolves within the same labeled region,
G ={Ge | e € E} is a collection of guards, where  he value function is subject to the optimality condition

Ge={ze€bdR,, | (g L(x)) =q}, associated with the region that contains that state. As a
) ' result, the continuous-state condition (3) must hold on the
forall e = (g,0,¢') € E. interior nodes (white), while the discrete-state switghin

Each regionR, refers to the continuous statese x  condition (4) must hold at the boundary nodes (black).
that are reachable while the automaton is in or transitions TN€ graph interpretation also clarifies why automata de-

to modeg. For each discrete modg the continuous state rived from co-safe LTL specifications fit within the dynamic
evolves insideR, until it enters a guard regio6¥ , ,.,) and programming framework but not automata derived from more

a discrete transition to modg is made. general temporal logics: the semantics of general LTL are

We can solve the optimal control problem with dynamic®Ver infinite execution traces, and requiréidi automata
programming by ensuring that the optimal value functiorWhose gcceptance conditions do not readily translate t_o a
is zero at every accepting state of the automaton. et single-sink shortest-path problem. Nevertheless, we view
X xQ — R be the optimal cost-to-go in (2), with* (o, o) the co-safe restriction as a strength, rather than weakness
denoting the optimal objective value when starting at thBecause co-safe LTL is highly expressive for practicalednt
initial condition (zo, o), subject to the discrete behaviorProblems, and because the solution methods we describe in
specification and final condition(T') = z ;. For simplicity, the next section are efficient for many classes of problems,
we assume that™* has no explicit dependence épwhich relatively simple to implement, and can be readily autochate
corresponds to searching for a stationary policy, althabgh

i be relaxed at th ¢ having to ¢h IV. L OWER BOUNDS ON THE OPTIMAL COST
assumption can be relaxed at the expense of having to choos N . e .
a time-varying basis when searching for an approximate ?et V* be a value function satisfying the hybrid HJB

value function later. In this setting, the cost-to-go $uts con_di_tions (3)—(5),_anc_1| suppqs_lé is another function that
a collection of mixed continuous-discrete Hamilton—Jaeob satisfies the following inequalities,

Bellman (HJB) equations, 0 LIV (z,q) @) + 0z, u)
. foV*(x,q) Co 7 o ©
O_ggg{&n.f(x,u)—i—é(a:,u) , 3) Va/:eRq, Yu e U, Vq GIQ7
< —
Vo € Rq, Vq S Q, 0 —V(xvq ) V(l'vq) + s(xv(L/q )a (7)
V*(x,q):mi/n{V*(x,q’)—|—8(Jc,q,q’)}, V$€Ge, Ve:(q,U,Q) ek,
q (4) 0:V(xf,qf), Vq]c c F. (8)
vx E GC’ ve = (q7 0-7 q/> e E’ * . . .
0=V*(zs.qr), Vay € F ®) Then V(zg,q0) < V*(xo,q0). This approach is motivated

by [18], [26], [29]. The inequalities (6)—(8) characteraeet
Equation (3) says that*(z,q) is an optimal cost-to-go of optimal value function under-estimators, among which is
inside the regions where the label remains constant. Thiee optimal value functio* itself. The difference between
next equation (4) is a shortest-path equality that must bold the equalities (3)—(5) and the inequalities (6)—(8) is the
every continuous state where a discrete state transition to aremoval of the minimum operators in favor of semi-infinite
different label can happen. Finally, the boundary equatiyn constraints and the addition of pointwise inequalities.
fixes the value function. The strength of using inequalities to search over value
We can interpret these HJB conditions intuitively as dunction under-estimators, instead of solving the HIB equa
single-sink shortest-path problem on a directed weightetibns directly, lies in an ability to come up witipproximate



value functions and ADP policies whose suboptimality cafror the constraints, condition (6) is the same as
be quantified, e.g., [30]. The ADP method is enabled by the

fact that we can come up with sufficient conditions that imply 21" ATP,+P,A+Q P,B ATr,| [x
(6)—(8), and relies on finding the largest approximate value0 < |u BTP, R BTry| |u 11
function that is a pointwise under-estimatelof. Thus we 1 quA quB 0 1 (11)
solve the problem Va € Ry, Yu €U, Yq € Q,
;nuatl));gglzt?) ‘zgc(o%)q())an d (8) (9) i.e., itis a collection ofQ| semi-infinite constraints indexed
’ by the continuous variables € X and u € U, one for
over the variables parameterizing the under-estinvate eachqg € Q. If R, is a quadratically representable set, e.g.,
The approximate value functiovi is written as a sum of ellipsoids or halfspaces, then we directly use $hprocedure
basis functions as follows, to obtain a finite number of sufficient conditions for (11) to
g hold [30]. Otherwise ifR, is not quadratically representable,
V(z,q) = Zwi,q¢i,q(x)a then two approaches can be_ }Jsed. One approach is exact:
— Given stateq € @, we partition R, to a finite set of

hequadratically representable sety = Ufi“l R}, and enforce

constr_aint (11) in state to eachR; with parameterization

(P;,74,t;). Note that such a partition is possible if the set

of states satisfying each atomic proposition is quadriica

representable. Alternatively, we can overapproximaig
ovV(z,q) . with a quadratically representable set. In both ca&esan

{ or fla,u) + €(x,u)} ' be overapproximated by a quadratically representable set.

Switching between different discrete modes is autonomous Similarly, the inequality (7) is enforced over each guard

région by the collection of E| semi-infinite constraints
on ADP, see the references [31], [32]. The goal of the rest

and the scaling with problem size can be controlled with
an appropriate parameterization 6f For more information .- m T { Py P, ry—r, } {LL]

T _ T L
of this section is to describe how to solve the optimization Uolrg =ra te —ta+&) |1 12)
problem (9) in specific instances. Vo € Ge, Ve e E.

where ¢; , : X — R are given basis functions, and t
coefficientsw; 4, i« = 1,...,n, are the variables. Given
an approximate value functiovi, an approximately optimal
control law can be implemented as

u(z,q) € argmin
uelU

A. Linear quadratic systems Once again, theS-procedure translates the semi-infinite
. . : constraints into a finite sufficient condition if the guard
In this section we describe how to search for an approxi-_ . . .

) . regionsG, are quadratically representable. The guard regions
mate value function for the linear system

are quadratically representable when each atomic proposit

#(t) = Az(t) + Bu(t), z(0) = =z, corresponds to a quadratically representable sét.in
_ ) ) Finally, the condition (8) relate®,,, r,,, andt,, via the
with a quadratic continuous cost |F| linear equality constraints

T T
= -
lr,u)=2"Qr+u' Ru, Q=0, R>=0, Ozx?quxf—i—%qfof—&—tqf, Vg € F, (13)

and a constant switching cost

S@ﬂﬂq{ﬁﬁq#q,

wherez; is the given fixed final state.

0 otherwise B. Nonlinear systems
where¢ > 0 is a given positive constant. For general nonlinear flows, it is appropriate to choose
We parameterize the approximate value function as @ more expressive value function approximation. A typical
quadratic. For each € Q, let approach would use a radial basis function (RBF) basis [33],
[34, §12],

V(z,q) = 2T Pye +2rTe +1,, forallzeXx, (10)

m _ . 2
where J:Dq = Pl ¢ R, g € .R” anq ty € R are Viz,q) = Zwi7qexp (_|33201|2)7 (14)
the variables of the parameterization. This parametévizat i=1 @i
is linear in (P,,rq,t,) and corresponds to choosing basis - . o
functions ¢; ,(x) that are quadratic, linear, and constant ifVheré{c:}i, is a finite set of center points R" chosen
the compohents af, respectively. to sample the continuous state spate and {a,}!", are
With the approximate value function in (10), the objectiveoos't“’? constgnts that define the RBF widths. The same set
function is then of basis functions can be used everywhere, or alternatively
the RBF centers can be chosen to have most of their support
V(0. q0) = a§ Paowo + 21 w0 + tg,- over the regionsk, appropriate to each statec Q.



With the approximate value function in (14), the objective -B
and constraints (6)—(8) lead to the optimization problem

" ()
maximize Z Wi, q®i,q(T0), A «

i=1

subjectto 0 < E Wi g <&¢)g’($) : f(x,u)> + Uz, u), start—> A
X
=1

Vz € R, Vueld, VqeQ,

B A
0< Z wzq w2,q)¢z( )+ s(z,q, Q) @

VCL‘ € G, Ve = (q,0,q) € E, Fig. 2. AutomatonA,, for o1 = QAN OB

0= Zwi,qf@‘ xf), Vg € L,
i= Guided by the automaton, we mechanically apply fhe

with variablesw; ,. The switching cost functios can be procedure to obtain the semidefinite program

defined as irgIV-A. - T T

This semi-infinite LP has a finite numben x |Q| of QL?LT;Z; x&%gfé)ﬁa?:éochg tao

variables but an infinite number of constraints. A general )

solution approach is to sample the constraints, and theyh variablesP, = PT € R>*%,r, e R%,t, e R,g € Q =

solve the finite linear program. The derivation of probably g, = 4.1, and e|ght addltlonal varlables coming from the

approximately correct (PAC) bounds on the needed numbgtprocedure. With; = 0, the final constraint (13) translates

of samples requires careful study of the specific dynam|q§t —0.

and costs in the optimization problem. The semidefinite program was solved using SDPT3 and

V. EXAMPLES resulted, within numerical accuracy, in the following \alu

. : . function:
A. Linear quadratic systems with halfspace labels

We consider the linear quadratic system.n= R? from Pr =
8IV-A with the specific parameters

. 0
2 =2 1 Tq:|::|7 q=4o,---,93,
= = 0

Q=1 R=1, ¢=1, 2 4=

tr = =
zo = (0.5,0), x5 =1(0,0). q (1)7 Z - 31,(12
’ — (3.

22.314 —28.142 B
—28.142 38799 | 4790

Let AP = {a,b} consist of atomic propositions that are
true whenever the continuous state enters a specific region,

o= True< (a(t) € Ra), Ra—={z€R|z <1} Ra s

b=True<= (z(t) € Rg), Rp={rcR?|x; >1}.
Note thatR 4 and R are closed halfspaces and the interface p 7
between them is the lin@ = {z € R? | 2; = 1}. We define b
the labeling functionZ : R? — {4, B} C ¥ = 247, where a
A = {a} andB = {b}. The goal is to satisfy the specification

=Q0ANOB,

where¢ is the LTL “eventually” operator.

The automaton that accepts this specification consists of
four states and is shown in Fig. 2. The discrete behavigig. 3.  Approximately minimum cost path satisfying; with initial
accepted by this automaton is any trajectory that everytual?cmdltlon zo = (0.5,0). To satisfye, the trajectory must leav& 4 and
visits each of the region® 4 and Rp. It Rp.

The guard regions are defined as Note that the shape df (-

,q) is the same for every state
g of the automaton, with the only difference being the offset
tq. The policy implied by this value function is illustrated
in Fig. 3 for the specific hybrid execution trace with initial
Note that the direction of crossing the guard region isonditionzy = (0.5,0). The reader is invited to follow the
encoded by the allowed DFA transitions. figure as we interpret the execution:

G(QO-,AJH) = RA? G(‘IO»BJD) = RB’
G(QlaB7Q2) = G(q27A,q2) =G.



1) The pathz(t) starts at the point with initial condition R Rp Re
zo = (0.5,0) and automaton staig.
2) The automaton makes an immediate transitionto

becausd.(xzy) = A and the value function is lower for . 7
this discrete state. The continuous dynamics follow the d // b
negative gradient oV (-, ¢1). -

3) At point b, the automaton transitions tg. The contin- @ /(//at
uous dynamics go down the gradient1s{-, ¢3) in the éf a

segment of the path betweérandec.

4) At point ¢, the automaton is already in its accepting
stateqs. The continuous dynamics continue to follow
the negative gradient df (-, g3) to reachzy = 0.

o Fig. 5. Approximately minimum cost paths satisfyipg, and level sets of
B. More complex specification the value function active in each region: the patle with initial condition

. . . o = (—0.5,—0.5) satisfiespa by visiting Rc, while the pathdef
We now consider three regionB.s, g, andRc with the i initial condition xo = (—0.5,0) satisfiespo by visiting R 4. Note

slightly more complex specification that the level sets ol/(-,q2) (solid, inside Rg) have a subtle tilt and
magnitude shift compared t0'(-, ¢4) (dashed, insideRz), which allows
w2 =(A—=OB)AN(C — OB) A (OAVOC). for the excursion away from the origin required by.
This specification ensures that eith&r, or Ro must be Mode vs. time

reached, after which the system must eventually vigit.

The automaton for this specification is shown in Fig. 4.
Depending on the accrued continuous and transition costs,
there is a choice to go left or right in Fig. 5.

-B

Fig. 6. State ofd,, and value function along the patfbc going right.

VI. CONCLUSION

-B

In this work, we approached the problem of optimal
control under co-safe LTL constraints with approximate
dynamic programming (ADP). The approximate policy is

We form the semidefinite program as before to obtai§iven by following a sequence of value functions over a
five approximate value function (-, ), one for eachy ¢  hybrid state space, w.here the cont'inuous component comes
Q = {qo,...,q} in the automaton. This time, we plot from the continuous-time and continuous-state dynamics of
the execution for two initial conditions, = (—0.5,—0.5), the system, and the discrete component comes from the

whose pathdbc) goes right, and:, = (—0.5,0), whose path SPecification automaton. For linear dynamical systems with

Fig. 4. AutomatonA,, for 2 = (A — OB)A(C — OB)A(QAVOC)

(def) goes left. See Fig. 5. quadratic cost functions, we used the specification autmmat
To interpret this policy, it is valuable to compare thet0 construct a semidefinite program that gives the subop-
spectra of the closed loop matrix timal policy. This procedure does not rely on discretizing
the time/state space or formulating non-convex optimirati
Al =A—-BR'B'P; i
a = q problems. The proposed framework can be incorporated as

in the initial modey = ¢, against the accepting moge= ¢4, a building block in other approximate control methods for
, . scalable synthesis of systems with LTL specifications.
A(AG) = {0786 £ 1,144}, A(AG,) = {~1+j}. Our ADP approach is limited to a co-safe subset of LTL
In the initial stateqq, the closed loop eigenvalues are unstaspecifications that admit deterministic and finite automato
ble, while they are stable in the final state Our procedure representations. Extensions to the general classiohBau-
therefore recovers the requirement of that a trajectory tomaton representations with continuous-time dynamies ar
starting near the origin in regioRz must go away to visit subjects of future work. Other directions include sampling
another region, and eventually transition to an acceptiaigs the semi-infinite constraints, and exploring the limitasaf
of the automaton before being allowed backzto= 0. different value function bases for general nonlinear syste



ACKNOWLEDGMENTS [16]

This work was supported in part by a Department of
Defense NDSEG Fellowship, the Boeing company, AFRIL7]
FA8650-15-C-2546, ONR N000141310778, ARO W911NF-
15-1-0592, NSF 1550212, DARPA W911NF-16-1-0001, and
ONR N00014-15-1P-00052. The authors wish to acknowlH8]
edge R. Ehlers for helpful discussions, and the anonymous;
reviewers for helping improve this paper.

REFERENCES [20]

[1] M. Kloetzer and C. Belta, “A fully automated framework fasrtrol of
linear systems from temporal logic specificatiod&EE Transactions [21]
on Automatic Contrglvol. 53, no. 1, pp. 287-297, 2008.

[2] G.E. Fainekos, A. Girard, H. Kress-Gazit, and G. J. PapfiEemporal
logic motion planning for dynamic robotsfutomatica vol. 45, no. 2,
pp. 343-352, 2009. [22]

[3] L. C. G. J. M. Habets and C. Belta, “Temporal logic controk f
piecewise-affine hybrid systems on polytopes,Proceedings of the
19th International Symposium on Mathematical Theory ofwdets
and Systems (MTNSJul. 2010, pp. 195-202.

[4] J.Liu and N. Ozay, “Abstraction, discretization, andbustness in tem-
poral logic control of dynamical systems,” international Conference [23]
on Hybrid Systems: Computation and Control (HSCGYCM, 2014,
pp. 293-302.

[5] R. Alur, T. A. Henzinger, G. Lafferriere, and G. J. Pappd3iscrete  [24]
abstractions of hybrid systemsPProceedings of the IEEEvol. 88,
no. 7, pp. 971-984, Jul. 2000. [25]

[6] P. Tabuada, “Symbolic control of linear systems based anbsyic
subsystems,JEEE Transactions on Automatic Contrafol. 51, no. 6,  [26]
pp. 1003-1013, Jun. 2006.

[7] S.L.Smith, J. Timova, C. Belta, and D. Rus, “Optimal path planning
for surveilance with temporal-logic constraintiiternational Journal  [27]
of Robotics Researchvol. 30, no. 14, pp. 1695-1708, Dec. 2011.

[8] T. Wongpiromsarn, U. Topcu, and R. M. Murray, “Recedingihon
temporal logic planning,1JEEE Transactions on Automatic Contjol [28g]
vol. 57, no. 11, pp. 2817-2830, Nov. 2012.

[9] E. Clarke, A. Fehnker, Z. Han, B. Krogh, J. Ouaknine, QurSiverg,
and M. Theobald, “Abstraction and counterexample-guidéidement  [29]
in model checking of hybrid systemdyiternational Journal of Foun-
dations of Computer Scienceol. 14, no. 04, pp. 583—-604, 2003.

[10] G. ReiBig, “Computing abstractions of nonlinear system&EE  [30]
Transactions on Automatic Controbol. 56, no. 11, pp. 2583-2598,
2011. [31]

[11] J. Fu and H. G. Tanner, “Bottom-up symbolic control: Attar-based
planning and behavior synthesidEEE Transactions on Automatic [32]
Control, vol. 58, no. 12, pp. 3142-3155, 2013.

[12] S. Karaman and E. Frazzoli, “Sampling-based algorithnmrsofuti-
mal motion planning with deterministig-calculus specifications,” in  [33]
American Control Conference (ACCJun. 2012, pp. 735-742.

[13] N. Kariotoglou, S. Summers, T. Summers, M. Kamgarpour, and
J. Lygeros, “Approximate dynamic programming for stochastache  [34]
ability,” in European Control Conference (ECCJul. 2013, pp. 584—

589.

[14] E. M. Wolff and R. M. Murray, “Optimal control of nonlinesystems  [35]
with temporal logic specifications,” international Symposium on
Robotics Research (ISRR013.

[15] E. M. Wolff, U. Topcu, and R. M. Murray, “Automaton-guide
controller synthesis for nonlinear systems with temporalidbgn [36]
IEEE/RSJ International Conference on Intelligent Robatd 8ystems
(IROS) Nov. 2013, pp. 4332—4339.

G. E. Fainekos, S. G. Loizou, and G. J. Pappas, “Trainglaémporal
logic to controller specifications,” ilEEE Conference on Decision
and Control (CDC) Dec. 2006, pp. 899-904.

T. Wongpiromsarn, U. Topcu, and A. Lamperski, “Automatadty
meets barrier certificates: Temporal logic verification of lirear
systems,”IEEE Transactions on Automatic Contralol. PP, no. 99,
pp. 1-1, Dec. 2015.

A. Rantzer, “Dynamic programming via convex optimizatian, IFAC
World Congress1999, pp. 491-496.

R. B. Vinter and R. M. Lewis, “A necessary and sufficieandition for
optimality of dynamic programming type, making no a priori assump-
tions on the controls,SIAM Journal on Control and Optimizatipn
vol. 16, no. 4, pp. 571-583, 1978.

O. Kupferman and M. Y. Vardi, “Model checking of safetyoperties,”
Formal Methods in System Desigvol. 19, no. 3, pp. 291-314, Nov.
2001.

T. Latvala, “Efficient model checking of safety propesj’ in In-
ternational SPIN Workshop on Model Checking of Softweger.
Lecture Notes in Computer Science, T. Ball and S. K. Rajamais, E
Springer, 2003, vol. 2648, pp. 74-88.

P. Gastin and D. Oddoux, “Fast LTL to UBhi automata
translation,” in International Conference on Computer Aided
Verification (CAV’'01) ser. Lecture Notes in Computer Science,
G. Berry, H. Comon, and A. Finkel, Eds., vol. 2102. Paris,
France: Springer, Jul. 2001, pp. 53-65. [Online]. Avaiabl
http://www.Isv.ens-cachan.fr/Publis/PAPERS/PS/Cae0is

A. Bhatia, M. R. Maly, L. E. Kavraki, and M. Y. Vardi, “Mabn
planning with complex goals/EEE Robotics Automation Magazine
vol. 18, no. 3, pp. 55-64, Sep. 2011.

Z. Manna and A. Pnueli,The Temporal Logic of Reactive and
Concurrent Systems Springer-Verlag, 1992.

C. Baier and J.-P. Katoe®rinciples of Model Checkingser. Repre-
sentation and Mind. MIT Press, 2008.

S. Hedlund and A. Rantzer, “Optimal control of hybrid ®ras,” in
IEEE Conference on Decision and Control (CD@pl. 4, 1999, pp.
3972-3977.

——, “Convex dynamic programming for hybrid system3$EEE
Transactions on Automatic Controvol. 47, no. 9, pp. 1536-1540,
2002.

X. Xu and P. J. Antsaklis, “Optimal control of switchedssgms based
on parameterization of the switching instant€EE Transactions on
Automatic Contral vol. 49, no. 1, pp. 2-16, 2004.

D. P. de Farias and B. V. Roy, “The linear programming apphoto
approximate dynamic programmingdperations Researchvol. 51,
no. 6, pp. 850-865, 2003.

Y. Wang and S. P. Boyd, “Performance bounds for lineactsstic
control,” Systems & Control Lettersol. 58, no. 3, pp. 178-182, 2009.
D. P. Bertsekas and J. N. Tsitsiklisleuro-Dynamic Programming
Athena Scientific, 1996.

W. B. Powell, Approximate Dynamic Programming: Solving the
Curses of Dimensionalifyser. Wiley Series in Probability and Statis-
tics. Wiley-Interscience, 2007.

J. Park and I. W. Sandberg, “Universal approximatiomgsiadial-
basis-function networksNeural Computationvol. 3, no. 2, pp. 246—
257, 1991.

E. Lavretsky and K. A. WiseRobust and Adaptive Control: with
Aerospace Applicationsser. Advanced Textbooks in Control and
Signal Processing. Springer, 2013.

T. H. Summers, K. Kunz, N. Kariotoglou, M. Kamgarpour, Sngu
mers, and J. Lygeros, “Approximate dynamic programming via sum of
squares programming,” iEuropean Control Conference (ECClul.
2013, pp. 191-197.

M. Johansson and A. Rantzer, “Computation of piecewisadeatic
Lyapunov functions for hybrid systemdEEE Transactions on Auto-
matic Contro) vol. 43, no. 4, pp. 555-559, Apr. 1998.



