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Abstract— We investigate the synthesis of optimal controllers
for continuous-time and continuous-state systems under tem-
poral logic specifications. The specification is expressed as a
deterministic, finite automaton (the specification automaton)
with transition costs, and the optimal system behavior is
captured by a cost function that is integrated over time. We
construct a dynamic programming problem over the product
of the underlying continuous-time, continuous-state system and
the discrete specification automaton. To solve this dynamic
program, we propose controller synthesis algorithms based
on approximate dynamic programming (ADP) for both linear
and nonlinear systems under temporal logic constraints. We
argue that ADP allows treating the synthesis problem directly,
without forming expensive discrete abstractions. We show that,
for linear systems under co-safe temporal logic constraints, the
ADP solution reduces to a single semidefinite program.

I. I NTRODUCTION

In this work, we address the problem of optimal control
of dynamical systems under temporal logic specifications.
Dynamical systems of interest to control are typically written
as differential equations on a continuous state space, within-
puts that can take on a continuum of values over a continuous
time interval. However, temporal logic constraints that permit
decidable synthesis must work with a finite or countable
parameterization of time and space. As a result, a control
designer must either forgo the continuous dynamics, create
a discrete abstraction, or somehow re-express the temporal
constraints within their optimal control framework.

Abstraction-based, hierarchical, and symbolic control
methods have been proposed for continuous systems under
temporal logic constraints [1–8]. These classes of methods
involve three general steps: 1) abstracting the dynamical
system as a discrete finite-state system, 2) synthesizing a
discrete control law using a product of the specification and
the abstraction, and 3) compatibly implementing the discrete
control law on the original continuous system. Approximate
abstractions can be developed by reachability-based compu-
tational methods, counter-example guided abstraction refine-
ment, and sampling-based methods [1], [9–13]. However, it
is well-known that the abstraction process is computationally
expensive. In addition, it is difficult to ensure the optimality
of a control policy designed at the abstraction level with
respect to a given continuous cost function.
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To address the issues of scalability, correctness, and op-
timality, Wolff et al. [14], [15] have formulated the control
problem directly as a mixed-integer linear program on the
system variables, which avoids a finite abstraction. This
encoding method applies to a fragment of Linear Temporal
Logic (LTL), while being sensitive to the accuracy of time
discretization. Earlier attempts at restricting LTL semantics
to work with continuous states also relied on a “flat” subset
of LTL [16], resulting in the construction of a hybrid
automaton, the size of which is exponential in the size of the
specification formula. More recent work has concentrated on
using sum-of-squares techniques and barrier certificates [17].

This paper exploits the idea that continuous-time and
continuous-state systems constrained by LTL specifications
can be viewed as a hybrid dynamical system through an
augmentation of the continuous state space with the dis-
crete states of the specification automaton. The resulting
optimality conditions consist of mixed continuous-discrete
Hamilton–Jacobi–Bellman (HJB) equations, which are dif-
ficult to solve in general. Therefore, approximate dynamic
programming (ADP) can be used to approximate the value
function, and to give an approximate policy. If this approx-
imate policy satisfies the logical specifications (checked by
simulation), then we can give bounds on the policy’s sub-
optimality with respect to the objective. Otherwise, a more
expressive basis must be chosen. The optimization-based
ADP framework provides considerable freedom to choose a
relevant basis representation, although we demonstrate that a
quadratic basis is often sufficient. Under mild assumptions,
an optimal policy that satisfies the specifications can be
recovered if the basis is complete, see [18, Thm. 3], [19].

Our dynamic program makes use of a finite acceptance
condition of the specification automaton by effectively treat-
ing controller synthesis as a kind of shortest path problem.As
a result, our framework is also limited to a subset of LTL for
its temporal specification language—in this case the fragment
is calledco-safeLTL [20]. Importantly, co-safe LTL admits
its own automaton construction method, e.g., [21], which is
more efficient than B̈uchi automata constructions for general
LTL [22]. An earlier similar proposed architecture used
the product of a co-safe LTL specification automaton and
a discrete abstraction of nonlinear robot dynamics with a
sampling-based planner [23]. By comparison, we treat the
hybrid dynamics directly, and restrict to piecewise linear
systems obviating the need for nonlinear random tree path
planning. Specifically, the main parameters under the de-
signer’s control are the value function bases used, rather than
the fidelity of the discretization of time or space.



We state the specific problem and describe the co-safe
LTL fragment in §II. We define the product between the
continuous-time, continuous-space dynamics and the discrete
automaton corresponding to the co-safe LTL specification,
and then write down the dynamic program in§III. We
describe an optimization-based framework for ADP in this
context in§IV, and give examples of how to implement the
optimization problem as a semidefinite program for linear
systems in§V. We conclude in§VI.

II. PROBLEM DESCRIPTION

We consider a continuous-time and continuous-state dy-
namical system onRn. This system is given by

ẋ = f(x, u), x(0) = x0, (1)

wherex(t) ∈ X ⊆ R
n and u(t) ∈ U ⊆ R

m are the state
and control signals at timet. For simplicity, we restrictf to
be a Lipschitz continuous function of(x, u), and the control
input u to be a piecewise right-continuous function of time,
with finitely many discontinuities on any finite time interval.
These conditions are not always required, but they ensure
the existence and uniqueness of solutions, and are meant to
prevent Zeno behavior.

The system (1) is constrained to satisfy a specification on
the discrete behavior obtained from its continuous trajectory.
First, letAP be a finite set of atomic propositions, which are
logical predicates that hold true whenx(t) is in a particular
region. Then, define a labeling functionL : X → Σ =
2AP , which maps a continuous statex ∈ X to the finite
subset of atomic propositions that evaluate to true atx. This
function partitions the continuous spaceX into regions that
share the same truth values inAP . The labeling function also
links the continuous system with itsdiscrete behavior. In the
following definition, φ(x0, [0, T ], u) refers to the trajectory
of the continuous system with initial conditionx0 under the
control inputu(t) over the time interval[0, T ].

Definition. Let t0, t1, . . . , tN be times, such that

• 0 = t0 < t1 < · · · < tN = T ,
• L(x(t)) = L(x(tk)), tk ≤ t < tk+1, k = 0, . . . , N ,
• L(x(t−k )) 6= L(x(t+k )), k = 0, . . . , N .

The discrete behavior, denotedB(φ(x0, [0, T ], u)), is the
discrete wordσ0σ1 . . . σN−1 ∈ Σ∗, whereσk = L(x(tk)).

A specification on the discrete behavior can be written as a
co-safe LTL formula over the finite set of atomic propositions
(for a comprehensive description of the syntax and semantics
of LTL, the reader is referred to [24], [25]). A co-safe LTL
formula is an LTL formula where every satisfying word
has a finite good prefix1 [20]. We restrict to such formulas
to take advantage of the expressiveness of temporal logic
for specifying optimal control problems without imposing
infinite Büchi acceptance conditions [22]. We give examples
of appropriate specifications in§V.

1Given a wordw ∈ Σ∗ and v ∈ Σ∗, v is a prefix ofw if and only if
w = vu for someu ∈ Σ∗. The wordu is called the suffix ofw.

Given a co-safe LTL specificationϕ over the set of atomic
propositionsAP , there exists a corresponding deterministic
finite-state automaton (DFA)Aϕ = 〈Q,Σ, δ, q0, F 〉, whereQ
is a finite set of states (modes),Σ = 2AP is a finite alphabet,
δ : Q × Σ → Q is a deterministictransition function such
that when the symbolσ ∈ Σ is read at stateq, the automaton
makes a deterministic transition to stateδ(q, σ) = q′, q0 ∈ Q

is the initial state, andF ⊆ Q is a set of final, oraccepting
states. The transition function is extended to a sequence of
symbols, or aword w = σ0σ1 . . . ∈ Σ∗, in the usual way:
δ(q, σ0v) = δ(δ(q, σ0), v) for σ0 ∈ Σ and v ∈ Σ∗. We say
that the finite wordw satisfiesϕ if and only if δ(q0, w) ∈
F . The set of words satisfyingϕ is the languageof the
automatonAϕ, denotedL(Aϕ).

The discrete behavior encodes the sequence of labels
visited by the state as it moves along its continuous trajectory.
Specifically, the atomic propositions are evaluated only at
the times when the label changes value. Thus a trajectory
φ(x0, [0, T ], u) satisfies an LTL specificationϕ if and only
if its discrete behavior is in the languageL(Aϕ). The optimal
control problem is formulated as follows.

Problem 1. Consider the system(1), a co-safe LTL specifi-
cationϕ, and a final statexf ∈ X . Design a control lawu
that minimizes the cost function

J =

∫ T

0

ℓ(x(τ), u(τ)) dτ +

N
∑

k=0

s(x(tk), q(t
−

k ), q(t
+
k )) (2)

subject to the constraints thatB(φ(x0, [0, T ], u)) ∈ L(Aϕ)
and x(T ) = xf .

Here,ℓ : X × U → R is a continuous loss function, and
s : X × Q × Q → R is the cost to transition between two
states of the automaton whenever such a transition is allowed.
The final statex(T ) = xf is also specified. Similar problems
have been studied in existing work [3], [8], [13], [15], [26–
28]. The novelty of our approach is twofold. First, we show
that this co-safe LTL problem can be cast as an optimal
hybrid control problem, and second, we use approximate
dynamic programming to synthesize a suboptimal controller
with guaranteed performance bounds.

III. PRODUCT FORMULATION

To solve Problem 1, we first augment the continuous state
spaceX with the discrete state spaceQ of the specification
automatonAϕ to obtain a hybrid system. The construction of
Aϕ for a specific formulaϕ can be automated with existing
tools [21], [22]. We show that the optimal control problem
constrained by a co-safe LTL specificationϕ is a dynamic
programming problem over the product spaceX ×Q.

In this setting, the hybrid state at timet is an ordered
pair (x(t), q(t)) ∈ X × Q. Evolution of the continuous-
state componentx(t) is governed by the original system
flow (1), while evolution of the discrete componentq(t) is
governed by the appropriate deterministic transition of the
specification automaton. Such a transition is initiated when
the continuous state crosses a boundary between two labeled



regions. Specifically, we consider the following product
hybrid system:

Definition. The product systemH = 〈Q,X , E, f,R,G〉 is
an internally forced hybrid system, where

• Q is the set of discrete states (modes) ofAϕ,
• X ⊆ R

n is the set of continuous states,
• E ⊆ Q× Σ×Q is a set of discrete transitions, where
e = (q, σ, q′) ∈ E if and only if δ(q, σ) = q′,

• f : X × U → R
n is the continuous vector field given

by (1),
• R = {Rq | q ∈ Q} is a collection of regions, where

Rq,σ = {x ∈ X | ∃q′ ∈ Q : (q′, σ, q) ∈ E,

andL(x) = σ}, q ∈ Q, σ ∈ Σ,

Rq =
⋃

σ∈Σ

Rq,σ, q ∈ Q,

• G = {Ge | e ∈ E} is a collection of guards, where

Ge = {x ∈ bdRq,σ | δ(q, L(x)) = q′},

for all e = (q, σ, q′) ∈ E.

Each regionRq refers to the continuous statesx ∈ X
that are reachable while the automaton is in or transitions
to modeq. For each discrete modeq, the continuous state
evolves insideRq until it enters a guard regionG(q,σ,q′) and
a discrete transition to modeq′ is made.

We can solve the optimal control problem with dynamic
programming by ensuring that the optimal value function
is zero at every accepting state of the automaton. LetV ⋆ :
X×Q → R be the optimal cost-to-go in (2), withV ⋆(x0, q0)
denoting the optimal objective value when starting at the
initial condition (x0, q0), subject to the discrete behavior
specification and final conditionx(T ) = xf . For simplicity,
we assume thatV ⋆ has no explicit dependence ont, which
corresponds to searching for a stationary policy, althoughthis
assumption can be relaxed at the expense of having to choose
a time-varying basis when searching for an approximate
value function later. In this setting, the cost-to-go satisfies
a collection of mixed continuous-discrete Hamilton–Jacobi–
Bellman (HJB) equations,

0 = min
u∈U

{

∂V ⋆(x, q)

∂x
· f(x, u) + ℓ(x, u)

}

,

∀x ∈ Rq, ∀q ∈ Q,

(3)

V ⋆(x, q) = min
q′

{V ⋆(x, q′) + s(x, q, q′)} ,

∀x ∈ Ge, ∀e = (q, σ, q′) ∈ E,
(4)

0 = V ⋆(xf , qf ), ∀qf ∈ F. (5)

Equation (3) says thatV ⋆(x, q) is an optimal cost-to-go
inside the regions where the label remains constant. The
next equation (4) is a shortest-path equality that must holdat
every continuous statex where a discrete state transition to a
different label can happen. Finally, the boundary equation(5)
fixes the value function.

We can interpret these HJB conditions intuitively as a
single-sink shortest-path problem on a directed weighted

q q′

u

Fig. 1. Finite state interpretation of HJB conditions (3)–(5)

graph, where nodes with the same label are treated together
and the weights are the incremental costsℓ(x, u)dt or the
discrete transition costss(x, q, q′) (Fig. 1). As long as the
continuous state evolves within the same labeled region,
the value function is subject to the optimality condition
associated with the region that contains that state. As a
result, the continuous-state condition (3) must hold on the
interior nodes (white), while the discrete-state switching
condition (4) must hold at the boundary nodes (black).

The graph interpretation also clarifies why automata de-
rived from co-safe LTL specifications fit within the dynamic
programming framework but not automata derived from more
general temporal logics: the semantics of general LTL are
over infinite execution traces, and require Büchi automata
whose acceptance conditions do not readily translate to a
single-sink shortest-path problem. Nevertheless, we view
the co-safe restriction as a strength, rather than weakness,
because co-safe LTL is highly expressive for practical control
problems, and because the solution methods we describe in
the next section are efficient for many classes of problems,
relatively simple to implement, and can be readily automated.

IV. L OWER BOUNDS ON THE OPTIMAL COST

Let V ⋆ be a value function satisfying the hybrid HJB
conditions (3)–(5), and supposeV is another function that
satisfies the following inequalities,

0 ≤
∂V (x, q)

∂x
· f(x, u) + ℓ(x, u),

∀x ∈ Rq, ∀u ∈ U , ∀q ∈ Q,

(6)

0 ≤V (x, q′)− V (x, q) + s(x, q, q′),

∀x ∈ Ge, ∀e = (q, σ, q′) ∈ E,
(7)

0 = V (xf , qf ), ∀qf ∈ F. (8)

Then V (x0, q0) ≤ V ⋆(x0, q0). This approach is motivated
by [18], [26], [29]. The inequalities (6)–(8) characterizea set
of optimal value function under-estimators, among which is
the optimal value functionV ⋆ itself. The difference between
the equalities (3)–(5) and the inequalities (6)–(8) is the
removal of the minimum operators in favor of semi-infinite
constraints and the addition of pointwise inequalities.

The strength of using inequalities to search over value
function under-estimators, instead of solving the HJB equa-
tions directly, lies in an ability to come up withapproximate



value functions and ADP policies whose suboptimality can
be quantified, e.g., [30]. The ADP method is enabled by the
fact that we can come up with sufficient conditions that imply
(6)–(8), and relies on finding the largest approximate value
function that is a pointwise under-estimate ofV ⋆. Thus we
solve the problem

maximize V (x0, q0)
subject to (6), (7), and (8)

(9)

over the variables parameterizing the under-estimateV .
The approximate value functionV is written as a sum of

basis functions as follows,

V (x, q) =

nq
∑

i=1

wi,qφi,q(x),

where φi,q : X → R are given basis functions, and the
coefficientswi,q, i = 1, . . . , nq are the variables. Given
an approximate value functionV , an approximately optimal
control law can be implemented as

u(x, q) ∈ argmin
u∈U

{

∂V (x, q)

∂x
· f(x, u) + ℓ(x, u)

}

.

Switching between different discrete modes is autonomous,
and the scaling with problem size can be controlled with
an appropriate parameterization ofV . For more information
on ADP, see the references [31], [32]. The goal of the rest
of this section is to describe how to solve the optimization
problem (9) in specific instances.

A. Linear quadratic systems

In this section we describe how to search for an approxi-
mate value function for the linear system

ẋ(t) = Ax(t) +Bu(t), x(0) = x0,

with a quadratic continuous cost

ℓ(x, u) = xTQx+ uTRu, Q � 0, R ≻ 0,

and a constant switching cost

s(x, q, q′) =

{

ξ if q 6= q′,

0 otherwise,

whereξ > 0 is a given positive constant.
We parameterize the approximate value function as a

quadratic. For eachq ∈ Q, let

V (x, q) = xTPqx+ 2rTq x+ tq, for all x ∈ X , (10)

where Pq = PT
q ∈ R

n×n, rq ∈ R
n and tq ∈ R are

the variables of the parameterization. This parameterization
is linear in (Pq, rq, tq) and corresponds to choosing basis
functionsφi,q(x) that are quadratic, linear, and constant in
the components ofx, respectively.

With the approximate value function in (10), the objective
function is then

V (x0, q0) = xT
0 Pq0x0 + 2rTq0x0 + tq0 .

For the constraints, condition (6) is the same as

0 ≤





x

u

1





T 



ATPq + PqA+Q PqB AT rq
BTPq R BT rq
rTq A rTq B 0









x

u

1





∀x ∈ Rq, ∀u ∈ U , ∀q ∈ Q,

(11)

i.e., it is a collection of|Q| semi-infinite constraints indexed
by the continuous variablesx ∈ X and u ∈ U , one for
eachq ∈ Q. If Rq is a quadratically representable set, e.g.,
ellipsoids or halfspaces, then we directly use theS-procedure
to obtain a finite number of sufficient conditions for (11) to
hold [30]. Otherwise ifRq is not quadratically representable,
then two approaches can be used. One approach is exact:
Given stateq ∈ Q, we partition Rq to a finite set of
quadratically representable setsRq =

⋃Nq

i=1 R
i
q and enforce

constraint (11) in stateq to eachRi
q with parameterization

(P i
q , r

i
q, t

i
q). Note that such a partition is possible if the set

of states satisfying each atomic proposition is quadratically
representable. Alternatively, we can overapproximateRq

with a quadratically representable set. In both cases,U can
be overapproximated by a quadratically representable set.

Similarly, the inequality (7) is enforced over each guard
region by the collection of|E| semi-infinite constraints

0 ≤

[

x

1

]T [

Pq′ − Pq rq′ − rq
rTq′ − rTq tq′ − tq + ξ

] [

x

1

]

∀x ∈ Ge, ∀e ∈ E.

(12)

Once again, theS-procedure translates the semi-infinite
constraints into a finite sufficient condition if the guard
regionsGe are quadratically representable. The guard regions
are quadratically representable when each atomic proposition
corresponds to a quadratically representable set inX .

Finally, the condition (8) relatesPqf , rqf , andtqf via the
|F | linear equality constraints

0 = xT
f Pqfxf + 2rTqfxf + tqf , ∀qf ∈ F, (13)

wherexf is the given fixed final state.

B. Nonlinear systems

For general nonlinear flows, it is appropriate to choose
a more expressive value function approximation. A typical
approach would use a radial basis function (RBF) basis [33],
[34, §12],

V (x, q) =
m
∑

i=1

wi,q exp

(

−
‖x− ci‖

2
2

a2i

)

, (14)

where{ci}mi=1 is a finite set of center points inRn chosen
to sample the continuous state spaceX , and {ai}

m
i=1 are

positive constants that define the RBF widths. The same set
of basis functions can be used everywhere, or alternatively
the RBF centers can be chosen to have most of their support
over the regionsRq appropriate to each stateq ∈ Q.



With the approximate value function in (14), the objective
and constraints (6)–(8) lead to the optimization problem

maximize
m
∑

i=1

wi,qφi,q(x0),

subject to 0 ≤

m
∑

i=1

wi,q

(

∂φi,q(x)

∂x
· f(x, u)

)

+ ℓ(x, u),

∀x ∈ Rq, ∀u ∈ U , ∀q ∈ Q,

0 ≤
m
∑

i=1

(wi,q′ − wi,q)φi(x) + s(x, q, q′),

∀x ∈ Ge, ∀e = (q, σ, q′) ∈ E,

0 =
m
∑

i=1

wi,qfφi(xf ), ∀qf ∈ F,

with variableswi,q. The switching cost functions can be
defined as in§IV-A.

This semi-infinite LP has a finite numberm × |Q| of
variables but an infinite number of constraints. A general
solution approach is to sample the constraints, and then
solve the finite linear program. The derivation of probably
approximately correct (PAC) bounds on the needed number
of samples requires careful study of the specific dynamics
and costs in the optimization problem.

V. EXAMPLES

A. Linear quadratic systems with halfspace labels

We consider the linear quadratic system onX = R
2 from

§IV-A with the specific parameters

A =

[

2 −2
1 0

]

, B =

[

1
1

]

,

Q = I, R = 1, ξ = 1,

x0 = (0.5, 0), xf = (0, 0).

Let AP = {a, b} consist of atomic propositions that are
true whenever the continuous state enters a specific region,

a = True⇐⇒ (x(t) ∈ RA) , RA = {x ∈ R
2 | x1 ≤ 1}

b = True⇐⇒ (x(t) ∈ RB) , RB = {x ∈ R
2 | x1 > 1}.

Note thatRA andRB are closed halfspaces and the interface
between them is the lineG = {x ∈ R

2 | x1 = 1}. We define
the labeling functionL : R2 → {A,B} ⊆ Σ = 2AP , where
A = {a} andB = {b}. The goal is to satisfy the specification

ϕ1 = ♦A ∧ ♦B,

where♦ is the LTL “eventually” operator.
The automaton that accepts this specification consists of

four states and is shown in Fig. 2. The discrete behavior
accepted by this automaton is any trajectory that eventually
visits each of the regionsRA andRB .

The guard regions are defined as

G(q0,A,q1) = RA, G(q0,B,q2) = RB ,

G(q1,B,q2) = G(q2,A,q2) = G.

Note that the direction of crossing the guard region is
encoded by the allowed DFA transitions.

q0start

q1

q2

q3

A

¬B

B

B

¬A

A

Fig. 2. AutomatonAϕ1
for ϕ1 = ♦A ∧ ♦B

Guided by the automaton, we mechanically apply theS-
procedure to obtain the semidefinite program

maximize xT
0 Pq0x0 + 2rTq0x0 + tq0

subject to (11), (12), and (13),

with variablesPq = PT
q ∈ R

2×2, rq ∈ R
2, tq ∈ R, q ∈ Q =

{q0, . . . , q3}, and eight additional variables coming from the
S-procedure. Withxf = 0, the final constraint (13) translates
to tq3 = 0.

The semidefinite program was solved using SDPT3 and
resulted, within numerical accuracy, in the following value
function:

P ⋆
q =

[

22.314 −28.142
−28.142 38.799

]

, q = q0, . . . , q3,

r⋆q =

[

0
0

]

, q = q0, . . . , q3,

t⋆q =











2, q = q0

1, q = q1, q2

0, q = q3.

RA RB

a

b

c

Fig. 3. Approximately minimum cost path satisfyingϕ1 with initial
conditionx0 = (0.5, 0). To satisfyϕ1, the trajectory must leaveRA and
visit RB .

Note that the shape ofV (·, q) is the same for every state
q of the automaton, with the only difference being the offset
tq. The policy implied by this value function is illustrated
in Fig. 3 for the specific hybrid execution trace with initial
conditionx0 = (0.5, 0). The reader is invited to follow the
figure as we interpret the execution:



1) The pathx(t) starts at the pointa with initial condition
x0 = (0.5, 0) and automaton stateq0.

2) The automaton makes an immediate transition toq1,
becauseL(x0) = A and the value function is lower for
this discrete state. The continuous dynamics follow the
negative gradient ofV (·, q1).

3) At point b, the automaton transitions toq3. The contin-
uous dynamics go down the gradient ofV (·, q3) in the
segment of the path betweenb andc.

4) At point c, the automaton is already in its accepting
stateq3. The continuous dynamics continue to follow
the negative gradient ofV (·, q3) to reachxf = 0.

B. More complex specification

We now consider three regions,RA, RB , andRC with the
slightly more complex specification

ϕ2 = (A → ♦B) ∧ (C → ♦B) ∧ (♦A ∨ ♦C).

This specification ensures that eitherRA or RC must be
reached, after which the system must eventually visitRB .
The automaton for this specification is shown in Fig. 4.
Depending on the accrued continuous and transition costs,
there is a choice to go left or right in Fig. 5.

q0start

q1

q2

q3

q4

A

B

C

B

¬B

B

A

C

B

¬B

Fig. 4. AutomatonAϕ2
for ϕ2 = (A → ♦B)∧(C → ♦B)∧(♦A∨♦C)

We form the semidefinite program as before to obtain
five approximate value functionsV (·, q), one for eachq ∈
Q = {q0, . . . , q4} in the automaton. This time, we plot
the execution for two initial conditionsx0 = (−0.5,−0.5),
whose path (abc) goes right, andx0 = (−0.5, 0), whose path
(def ) goes left. See Fig. 5.

To interpret this policy, it is valuable to compare the
spectra of the closed loop matrix

Acl
q = A−BR−1BTP ⋆

q

in the initial modeq = q0 against the accepting modeq = q4,

λ(Acl
q0
) = {0.786± 1.144j}, λ(Acl

q4
) = {−1± j}.

In the initial stateq0, the closed loop eigenvalues are unsta-
ble, while they are stable in the final stateq4. Our procedure
therefore recovers the requirement ofϕ2 that a trajectory
starting near the origin in regionRB must go away to visit
another region, and eventually transition to an accepting state
of the automaton before being allowed back toxf = 0.

RA RB RC

a

b

c

d

e

f

Fig. 5. Approximately minimum cost paths satisfyingϕ2, and level sets of
the value function active in each region: the pathabc with initial condition
x0 = (−0.5,−0.5) satisfiesϕ2 by visiting RC , while the pathdef
with initial condition x0 = (−0.5, 0) satisfiesϕ2 by visiting RA. Note
that the level sets ofV (·, q2) (solid, insideRB) have a subtle tilt and
magnitude shift compared toV (·, q4) (dashed, insideRB), which allows
for the excursion away from the origin required byϕ2.
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Fig. 6. State ofAϕ2
and value function along the pathabc going right.

VI. CONCLUSION

In this work, we approached the problem of optimal
control under co-safe LTL constraints with approximate
dynamic programming (ADP). The approximate policy is
given by following a sequence of value functions over a
hybrid state space, where the continuous component comes
from the continuous-time and continuous-state dynamics of
the system, and the discrete component comes from the
specification automaton. For linear dynamical systems with
quadratic cost functions, we used the specification automaton
to construct a semidefinite program that gives the subop-
timal policy. This procedure does not rely on discretizing
the time/state space or formulating non-convex optimization
problems. The proposed framework can be incorporated as
a building block in other approximate control methods for
scalable synthesis of systems with LTL specifications.

Our ADP approach is limited to a co-safe subset of LTL
specifications that admit deterministic and finite automaton
representations. Extensions to the general class of Büchi au-
tomaton representations with continuous-time dynamics are
subjects of future work. Other directions include sampling
the semi-infinite constraints, and exploring the limitations of
different value function bases for general nonlinear systems.
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