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CDS270-2 Exercises

1. Block matrix gymnastics. In this problem we will derive classical block matrix “tricks”
using just linear algebra. (If you need to take a derivative, you are doing it wrong!)
Let A = AT ∈ Rn×n and D = DT ∈ Rm×m be symmetric matrices, and B ∈ Rn×m.

(a) Matrix completion of squares. Show that if A is invertible, then

[

x
y

]T [
A B
BT D

] [

x
y

]

= (x+ A−1By)TA(x+ A−1By) + yT (D −BTA−1B)y

for all x ∈ Rn and y ∈ Rm.

(b) Further assuming that A ≻ 0, partially minimize over x to conclude that

inf
x∈Rn

[

x
y

]T [
A B
BT D

] [

x
y

]

= yT (D −BTA−1B)y.

The quantity S = D − BTA−1B is called the Schur complement of A.

(c) Use the previous results to prove that A ≻ 0 and S ≻ 0 if and only if
[

A B
BT D

]

≻ 0.

(d) Block LDU decomposition. Show that if A is invertible, then
[

A B
BT D

]

=

[

I 0
BTA−1 I

] [

A 0
0 S

] [

I A−1B
0 I

]

,

where S is the Schur complement of A. This decomposition is also known as the
Aitken block diagonalization formula. Hint. start with completion of squares.

(e) Use the block LDU decomposition to show that
[

A B
BT D

]−1

=

[

A−1 + A−1BS−1BTA−1 −A−1BS−1

−S−1BTA−1 S−1

]

,

provided the inverse exists. Hint. what is the inverse of a block triangular matrix?
block diagonal matrix? Consider the 2× 2 case and generalize.

(f) Permute the completion of squares formula and/or partially minimize over y to
show the analogous formula

[

A B
BT D

]−1

=

[

T−1 −T−1BD−1

−D−1BTT−1 D−1 +D−1BTT−1BD−1

]

,

where T = A − BD−1BT is the Schur complement of D. Clearly state any
assumptions.
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(g) Matrix inversion lemma. Provided the inverses exist, prove that

(A− BD−1BT )−1 = A−1 + A−1B(D − BTA−1B)−1BTA−1.

Conclude the rank-one update formula, which states

(A+ bbT )−1 = A−1 − (A−1b)(A−1b)T

1 + bTA−1b

for all b ∈ Rn.

(h) Matrix determinant lemma. Provided the inverses exist, prove that

det

[

A B
BT D

]

= (detA)(detS) = (detD)(detT ).

Conclude that det(A+ bbT ) = (1 + bTA−1b) detA for all b ∈ Rn.

2. LMI characterizations of matrix eigenvalues. Let A ∈ Rm×n be a matrix with m ≥ n,
and X = XT ∈ Rn×n be a symmetric matrix (no requirement on definiteness). Prove
the following:

(a) λmax(X) ≤ t if and only if X � tI.

(b) λmin(X) ≥ s if and only if sI � X.

(c) Assuming t ≥ 0, prove that σmax(A) ≤ t if and only if ATA � t2I. Conclude that
σmax(A) ≤ t if and only if

[

tI AT

A tI

]

� 0.

3. Lyapunov exponent. The decay rate of the system ẋ(t) = f(x(t)) is the largest (supre-
mum) real number α such that limt→∞ eαt‖x(t)‖2 = 0 for all trajectories x(t) satisfying
the ODE.

(a) Suppose there exists a quadratic Lyapunov function V (z) = zTPz, such that

dV (x(t))

dt
≤ −2αV (x(t))

for all trajectories, where P ≻ 0 is given. Show that the decay rate is at least α.
(Hint. apply Grönwall’s inequality.)

(b) For the LTI system ẋ(t) = Ax(t), prove that the decay rate is equal to the stability
degree of the matrix A, which is defined as

SD(A) = − max
1≤i≤n

Re(λi(A)).

In other words, the decay rate of an LTI system is the signed distance from the
imaginary axis of the rightmost eigenvalue of A (positive if A is stable.)
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(c) Show that the stability degree of a matrix A is at least α if there exists P ≻ 0
such that

ATP + PA+ 2αP � 0,

or equivalently if there exists Q ≻ 0 such that

QAT + AQ+ 2αQ � 0.

(d) Describe a method that determines the stability degree of a given matrix A ∈
Rn×n by solving a sequence of LMIs. (Hint. Use bisection on α.) Implement your
method on the specific matrix

A =





−7 3 −10
17 11 −34
9 7 −18



 ,

and check your answer by finding the eigenvalues of A.

4. Inner restriction of LMIs. [AM14] A square matrix A ∈ Rn×n is weakly diagonally
dominant if its entries satisfy

|Aii| ≥
∑

j 6=i

|Aij|, for all i = 1, . . . , n.

Define Kdd as the set of symmetric, weakly diagonally dominant matrices with non-
negative diagonal entries,

Kdd = {A ∈ Sn | A is weakly diagonally dominant, Aii ≥ 0, i = 1, . . . , n.}

(a) Show that Kdd is a convex cone.

(b) Prove the inclusion Kdd ⊆ Sn
+. Is the inclusion strict?

(c) Consider the standard form semidefinite program (SDP)

minimize Tr(CX)
subject to Tr(AiX) = bi, i = 1, . . . , p

X � 0

with matrix variable X ∈ Sn and parameters C,A1, . . . , Ap ∈ Sn. Suggest a linear
program (LP) that gives an upper bound on the optimal value of the SDP above.

5. SOCP restriction of LMI. [AM14] This problem is an extension of the previous one.
A matrix A ∈ Rn×n is scaled diagonally dominant if there exists a diagonal matrix
D ≻ 0 such that DAD is diagonally dominant. Define the cone

Ksdd = {A ∈ Sn | ∃D ≻ 0, DAD is weakly diagonally dominant, Aii ≥ 0, i = 1, . . . , n.}
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(a) Prove the (strict) inclusions Kdd ⊂ Ksdd ⊂ Sn
+.

(b) The second order cone (sometimes called the ice-cream cone) is defined as

Qn = {(t, x) ∈ R×Rn−1 | ‖x‖2 ≤ t}
According to [BCPT05, Theorem 9], scaled diagonally dominant matrices can be
written as sums of positive semidefinite matrices that are nonzero on a 2 × 2
principal sub-matrix. For example, for n = 3, we have A ∈ Ksdd if and only if A
can be written as the sum

A =





x1 x2 0
x2 x3 0
0 0 0



+





y1 0 y2
0 0 0
y2 0 y3



+





0 0 0
0 z1 z2
0 z2 z3



 ,

where the sub-matrices are all positive semidefinite,
[

x1 x2

x2 x3

]

� 0,

[

y1 y2
y2 y3

]

� 0,

[

z1 z2
z2 z3

]

� 0.

Using this fact, show how to write the constraint A ∈ Ksdd as an SOCP constraint
(Hint. rewrite the 2× 2 SDP constraints as hyperbolic constraints).

(c) Suggest a tighter SOCP-based restriction of the standard form SDP

minimize Tr(CX)
subject to Tr(AiX) = bi, i = 1, . . . , p

X � 0

than the LP restriction from the previous exercise.

6. Hyperbolic constraints. [LVBL98] Let x and y be real scalars and w ∈ Rn a vector.

(a) Show that

wTw ≤ xy, x ≥ 0, y ≥ 0 ⇐⇒
∥

∥

∥

∥

[

2w
x− y

]∥

∥

∥

∥

2

≤ x+ y.

(b) Use the result from part (a) to rewrite the SDP constraint
[

x wT

w yIn×n

]

� 0

as an SOCP constraint in the variables x, y ∈ R and w ∈ Rn.

7. Euclidean Jordan algebra. A product ◦ on Rn (n ≥ 2) is a function ◦ : Rn×Rn → Rn

that takes two real vectors and returns another real vector of the same dimension. The
notation xk means x ◦ · · · ◦ x (k times). We do not assume ◦ is associative,

x ◦ (y ◦ z) 6= (x ◦ y) ◦ z in general.

Define the cone of squares K for the product ◦ as K = {x ◦ x | x ∈ Rn}. The cone of
squares K is symmetric if the product ◦ obeys the following properties:
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• Bilinearity : x ◦ y is linear in x for fixed y and vice-versa

• Commutativity : x ◦ y = y ◦ x
• Jordan identity : x2 ◦ (y ◦ x) = (x2 ◦ y) ◦ x
• Adjoint identity : xT (y ◦ z) = (x ◦ y)T z

(a) Nonnegative orthant. Recall that the set of real vectors with nonnegative entries,

Rn
+ = {x ∈ Rn | xi ≥ 0, for all i = 1, . . . , n},

is called the nonnegative orthant. Show that Rn
+ is the cone of squares with ◦

defined by the entrywise (Hadamard) product:

(x ◦ y)i = xiyi, i = 1, . . . , n.

(b) Second order cone. Show that the second order cone,

Qn = {(x0, x1) ∈ R×Rn−1 | ‖x1‖2 ≤ x0},

is the cone of squares corresponding to the product

x ◦ y =

[

xTy
x0y1 + y0x1

]

.

(c) Positive semidefinite cone. Show that the positive semidefinite cone,

Sn
+ = {X ∈ Rn×n | X = XT has nonnegative eigenvalues} ∼= Rn(n+1)/2,

is the cone of squares corresponding to the symmetrized matrix product

X ◦ Y =
1

2
(XY + Y X).

(In this matrix case, we define the cone of squares as {X ◦X | X ∈ Sn} and use
the trace inner product.)

8. Subdifferential identity. Let f : Rn → R be a (closed, proper) convex real-valued
function. A vector g ∈ Rn is a subgradient of f at x if

f(y) ≥ f(x) + gT (y − x), for all y ∈ Rn.

The subdifferential ∂f(x) ⊆ Rn is the (possibly empty) set of all subgradients of f at
x. For example, if f is also differentiable at x, then ∂f(x) = {∇f(x)} is a singleton
set. The convex conjugate f ∗ of f is a function defined as

f ∗(y) = sup
x∈dom f

(

yTx− f(x)
)

.

Show that these two seemingly unrelated concepts are, in fact, related by

y ∈ ∂f(x) ⇐⇒ x ∈ ∂f ∗(y).
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9. Conjugate of a Lyapunov function. If f : Rn → R is a function, then its convex
conjugate f ∗ is defined as

f ∗(y) = sup
x∈dom f

(

yTx− f(x)
)

.

(a) Let P ≻ 0 and define V (x) = 1
2
xTPx. Show that V ∗(y) = 1

2
yTP−1y.

(b) [GTHL06] For V , V ∗ positive definite, show that

∂V (x)TAx < 0 for all x ∈ Rn ⇐⇒ ∂V ∗(y)TATy < 0 for all y ∈ Rn.

By the set notation ∂f(x)T z < 0 we mean yT z < 0 for all y ∈ ∂f(x). Interpret
the equivalence in terms of the Lyapunov functions for the system ẋ = Ax and
its dual system ẏ = ATy.

10. Essay question. Many distinguished scholars argue that everything known about state
space, or “modern,” control theory can be reduced to successive applications of the
singular value decomposition. To what extent is this view true or false? Cite specific
(quantitative and qualitative) examples of this viewpoint, and discuss its merits and
pitfalls. You might find the following thought experiments useful.

• SVD-landia. Suppose we lived in a world where the SVD of any size matrix could
be computed in constant time regardless of the dimensions. Why would you want
or not want to be a resident of such a world?

• Not-impossiblia. As an approximation of SVD-landia, suppose the full SVD of
any matrix that fits in memory, say 103GB, could be computed in 1µs or less
(including the time it takes to load, operate on the matrix, and store the result)
in a package the size of a cellphone. How happy are you as a controls researcher?

• Patentville. Suppose that every time anyone wished to solve Ax = b, the matrix
A had to be sent, via post, to a Central Bureaucracy, where well-paid clerks would
manually compute the QR decomposition and send back, via post, the matrices
Q and R. How would you change your mode of operations?

11. Convolution equation. In this problem you will derive the continuous time convolution
equation using discrete time ideas. Consider the driven system











ẋ(t) = Ax(t) + v(t)

y(t) = Cx(t) + w(t)

x(0) = x0

where A, C are appropriately sized real matrices and v(t) ∈ Rn, w(t) ∈ Rp are
continuous driving terms. Let δ ≪ 1 be a small time interval and consider the zero-
order hold, forward Euler discretization of the state in the above system,

xk+1 − xk

δ
= Axk + vk

x(0) = x0,

6



where for each k = 0, 1, 2, . . . we have x(kδ) = xk, v(kδ) = vk.

(a) Show that the discretization above leads to

xk = (I + Aδ)kx0 +
k−1
∑

i=0

(I + Aδ)k−1−iviδ, k = 0, 1, 2, . . .

(b) Take appropriate Riemann limits above to obtain the convolution formula,

x(t) = eAtx0 +

∫ t

0

eA(t−τ)v(τ) dτ.

You can take the following limit as given:

lim
δ→0+

(I + Aδ)⌊t/δ⌋ = eAt.

(c) Show that the output for the original continuous time system is

y(t) = CeAtx0 +

∫ t

0

CeA(t−τ)v(τ) dτ + w(t).

12. Quadratic stability margins. [BEFB94, §5.1.2] Consider the following system,











ẋ = Ax+ Bpp

q = Cqx

p = ∆(t)q,

(1)

where ∆(t) = ∆ ∈ Rnp×nq is a matrix that satisfies ‖∆‖2 ≤ α, and all initial conditions
are zero. This can be thought of as an autonomous plant with zero input and an
unknown but constant feedback perturbation as illustrated below.

p q

w = 0 zP

∆(t)

(a) Show that the transfer function from p to q (without feedback perturbation) is
Hqp(s) = Cq(sI − A)−1Bp.
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(b) Show that the condition p = ∆q and ‖∆‖2 ≤ α can be rewritten as

pTp ≤ α2qT q for all p, q.

Conclude that (x, p) must satisfy

[

x
p

]T [
α2CT

q Cq 0
0 −I

] [

x
p

]

≥ 0. (2)

(c) Use the quadratic Lyapunov function candidate V (x) = xTPx to show that the
system is quadratically stable if there exists P ≻ 0 such that

[

x
p

]T [
ATP + PA PBp

BT
p P 0

] [

x
p

]

< 0

for all nonzero (x, p) satisfying (2).

(d) Suppose (2) is strictly feasible. Combine the previous two parts with the lossless
S-procedure to show that the system is quadratically stable if there exists P ≻ 0
and τ ≥ 0 such that

[

ATP + PA+ τα2CT
q Cq PBp

BT
p P −τI

]

≺ 0,

or equivalently, if there exists P̃ ≻ 0 such that

[

AT P̃ + P̃A+ α2CT
q Cq P̃Bp

BT
p P̃ −I

]

≺ 0.

(e) The quadratic stability margin is the largest value α ≥ 0 for which the system is
quadratically stable, which can be solved by the SDP in P̃ , β = α2, given by

maximize β

subject to P̃ ≻ 0, β ≥ 0
[

AT P̃ + P̃A+ βCT
q Cq P̃Bp

BT
p P̃ −I

]

≺ 0.

Use the bounded-real lemma (KYP) to interpret the quadratic stability margin
in terms of the H∞ norm of the transfer function Hqp(s).

13. LQR stability margins. In this problem, we will compute guaranteed stability margins
for infinite horizon LQR. Consider the state feedback system

{

ẋ = Ax+ B∆u

u = Kx,
(3)
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where K = −R−1BTP , and P ≻ 0 satisfies the algebraic Riccati equation

ATP + PA− PBR−1BTP +Q = 0

for given matrices Q ≻ 0, R ≻ 0. Assume that R is diagonal. Show that the system (3)
is quadratically stable with Lyapunov function V (x) = xTPx if the matrix ∆ ∈ Rnu×nu

is diagonal and ∆ii ≥ 1/2 for all i = 1, . . . , nu. Thus, LQR is robust to 1/2 gain
reduction and unbounded gain amplification in each input channel.

Hint. Use the Riccati equation to show that

V̇ (x) = xT (PB(R−1 −R−1∆T −∆R−1)BTP −Q)x < 0 for all x 6= 0

if R−1 −R−1∆T −∆R−1 � 0, and that this happens if ∆ is diagonal with ∆ii ≥ 1/2.

14. Lyapunov equation. Let A be a Hurwitz matrix and let Q = QT � 0. Show that the
Lyapunov equation ATP + PA+Q = 0 has a solution given by the limit

P = lim
T→∞

∫ T

0

eA
T tQeAt dt.

Furthermore, show that if Q ≻ 0, then P ≻ 0 as well.

15. Certificate of instability. Let ẋ = Ax be an autonomous linear system and suppose
there exists a function V (x) = xTPx, with P 6� 0 such that ATP + PA � 0. Prove
that A is not (Hurwitz) stable.

16. Discrete Lyapunov inequality. In this problem, we will relate the classical Lyapunov
inequality ATP + PA ≺ 0 to the discrete time version AT

dPAd − P ≺ 0. We are
concerned with the autonomous (continuous time) linear system on Rn,

{

ẋ(t) = Ax(t)

x(0) = x0.
(4)

(a) Let xk+1 = Adxk be an arbitrary discrete time system on Rn. Show that

lim
k→∞

xk = 0

for every initial condition x0 if there exists a quadratic Lyapunov function V (z) =
zTPz such that

P ≻ 0, AT
dPAd − P ≺ 0.

Hint. Show that the sequence Vk = xT
kPxk converges to zero.

(b) Now consider the forward Euler discretization of (4),

xk+1 − xx

δ
= Axk, k = 0, 1, 2 . . . ,
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where δ ≪ 1 is a small time interval and xk = x(kδ) for all k = 0, 1, 2, . . .. Suppose
that the forward Euler discretized system is stable, i.e., with Ad = I + Aδ there
exists P ≻ 0 such that

(I + Aδ)TP (I + Aδ)− P ≺ 0.

Show that ATP +PA ≺ 0. Thus the continuous time system (4) is stable as well.

(c) Conversely, suppose the continuous time system (4) is stable with ATP +PA ≺ 0
for some Lyapunov matrix P ≻ 0. Show that there exists a small enough δ > 0
such that the forward Euler discretization is stable.

17. Worst-case analysis. Consider the system from exercise 12,










ẋ = Ax+ Bpp

q = Cqx

p = ∆(t)q,

(5)

with initial condition x(0) = x0 ∈ Rn, where ∆(t) ∈ Rnp×nq is a feedback perturbation
that satisfies ‖∆(t)‖2 ≤ α for all t ≥ 0. Let Q = QT ≻ 0 be a given matrix, and define
a quadratic index

J(x0) =

∫ ∞

0

x(t)TQx(t) dt,

which depends on the initial condition x0. Note that J can be infinite.

(a) Suppose there exists a Lyapunov function V (z) = zTPz, P ≻ 0, with

V̇ (x) ≤ −xTQx

for all (x, p) satisfying pTp ≤ α2xTCT
q Cqx. Show that J(x0) ≤ V (x0). If we think

of J(x0) as a cost associated with a trajectory of (5), this means that V (x0) is an
upper bound on the worst possible cost over all instances ‖∆(t)‖2 ≤ α.

(b) Use the S-procedure to show that J(x0) ≤ V (x0) if there exists P , τ such that

P ≻ 0, τ ≥ 0,

[

ATP + PA+Q+ τα2CT
q Cq PBp

BT
p P −τI

]

� 0.

(c) For given α ≥ 0 and x0, describe a procedure that produces a very good (i.e.,
small) upper bound on J(x0).

18. Discrete time bounded real lemma. Show that the discrete time system

xk+1 = Axk + Buk, yk = Cxk +Duk, x0 = 0, k = 0, 1, 2, . . .

is nonexpansive, i.e.,

T
∑

k=0

yTk yk ≤
T
∑

k=0

uT
k uk, for all T ≥ 0,
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if there exists a matrix P ≻ 0 such that
[

ATPA− P + CTC ATPB + CTD
BTPA+DTC BTPB +DTD − I

]

� 0.

Hint. Use the quadratic storage function V (x) = xTPx, P = P T ≻ 0, and impose the
condition ∆V (x) + yTy − uTu ≤ 0 for all (x, u).

19. H∞-synthesis with single entry uncertainty. A state space system obeys the differential
equation

ẋ(t) = A(t)x(t) +Buu(t) + Bww(t)

z(t) = Czx(t) +Dzuu(t),

where x(t) ∈ Rn is the state, z(t) ∈ Rnz is a regulated output, u(t) ∈ Rnu is a
control input, and w(t) ∈ Rnw is an external disturbance. Assume the initial condition
x(0) = 0.

Every entry of the matrix A(t) is constant for all t, except for a single entry at a given
index (i, j), which varies (smoothly) in a known range around a nominal value, i.e.,
Aij(t) ∈ [Anom

ij − δ, Anom
ij + δ] for some fixed δ > 0 and for all t.

We would like to design a state-feedback control law u(t) = Kx(t) such that

• the closed loop system is stable for all A(t) in the uncertainty model

• the disturbance-to-output L2 gain is as small as possible

(a) Show how to model the uncertain system as a norm-bound LDI, i.e., in the form

ẋ(t) = Anomx(t) + Bpp(t) +Buu(t) + Bww(t)

z(t) = Czx(t) +Dzuu(t)

q(t) = Cqx(t)

p(t) = ∆(t)q(t), ‖∆(t)‖ ≤ 1.

Identify the matrices Anom, Bp, Cq, ∆(t), and their dimensions.

(b) Consider the closed loop system with a state-feedback control law u(t) = Kx(t)
in place, which has the form

ẋ(t) = (Anom + BuK)x(t) + Bpp(t) + Bww(t)

z(t) = (Cz +DzuK)x(t)

q(t) = Cqx(t)

p(t) = ∆(t)q(t), ‖∆(t)‖ ≤ 1,

where the last line can be replaced by the pointwise constraint pTp ≤ qT q. Show
that the disturbance-to-output L2 gain is bounded above by γ,

sup
‖w(·)‖2

2
6=0

‖z(·)‖22
‖w(·)‖22

≤ γ2,
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if there exists a quadratic storage function V (x) = xTPx, P = P T ≻ 0, with
V̇ + zT z − γ2wTw ≤ 0 for all x, p, w and q = Cqx satisfying the LDI.

(c) Use the S-procedure to show that such a storage function exists if there exists a
matrix P = P T ≻ 0 and a real number τ ≥ 0 with









(

(Anom + BuK)TP + P (Anom + BuK)
+(Cz +DzuK)T (Cz +DzuK) + τCT

q Cq

)

PBp PBw

BT
p P −τI 0

BT
wP 0 −γ2I









� 0.

(d) Use the change of variables Q = P−1, Y = KQ to argue that the previous matrix
inequality is equivalent to Q ≻ 0, µ ≥ 0, and









(

AnomQ+Q(Anom)T + Y TBT
u + BuY

+µBpB
T
p +BwB

T
w

)

QCT
q QCT

z + Y TDT
zu

CqQ −µI 0
CzQ+DzuY 0 −γ2I









� 0.

Hint. You may wish to take and “un”-take several Schur complements.

(e) Show how to use the LMI from the previous part to make γ (the upper bound on
the L2 gain from w to z) as small as possible, and how to determine the optimal
state feedback gain matrix K.

(f) Implement your method for the specific data

Anom =





0 1 0
0 −1 1
0 −1 −1



 , Bu = Bw =





0
0
1



 , Cz =
[

1 0 0
]

, Dzu = 1

with (i, j) = (3, 3) and δ = 1. In other words, there is ±100% uncertainty in
the (3, 3) entry of A. Is your method numerically well conditioned? (What is the
condition number of Q⋆?)

20. LQR for affine LTV systems. The dynamics for a linear time-varying discrete time
system are

xt+1 = Atxt +Btut + ct, t = 0, 1, . . . ,

where At ∈ Rn×n, Bt ∈ Rn×m and ct ∈ Rn are parameters that depend only on the
discrete time index t. Write down the Bellman recursion for minimizing the quadratic
cost index

J =

(

T−1
∑

τ=0

xT
τ Qxτ + uT

τ Ruτ

)

+ xT
TQTxT , Q � 0, R ≻ 0,
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subject to the time-varying dynamics and initial condition x0 = z. Show how to
explicitly compute every step. Hint. represent the value function as

Vt(z) =

[

z
1

] [

Pt qt
qTt rt

] [

z
1

]

, t = 0, 1, . . . , T,

where Pt = P T
t ∈ Rn×n, qt ∈ Rn, and rt ∈ R for all t = 0, 1, . . . , T , and show how

these parameters update with time.

21. Exploiting subsystem structure. Consider the set of linear matrix inequalities

P ≻ 0, ATP + PA+ 2αP � 0, (6)

where α is a given real number, and P = P T is the variable. The matrix A has the
special structure

A = A0 ⊗ Im =







(A0)11Im · · · (A0)1nIm
...

. . .
...

(A0)n1Im · · · (A0)nnIm






∈ Rnm×nm,

where A0 is a (small) n × n matrix, Im is the m × m identity matrix, and ⊗ is the
Kronecker product.

(a) Show that there exists a matrix P ∈ Rnm×nm satisfying (6) if and only if there
exists a matrix P0 ∈ Rn×n satsifying

P0 ≻ 0, AT
0 P0 + P0A0 + 2αP0 � 0. (7)

(b) The following 2000 × 2000 matrix consists of four diagonal 1000 × 1000 blocks.
Determine if it is Hurwitz stable, and if so, find its stability degree (cf. exercise 3).

A =



















−1.5 0 1 0
. . . . . .

0 −1.5 0 1
−1 0 0 0

. . . . . .

0 −1 0 0



















22. Gramian inequalities. Let A ∈ Rn×n, C ∈ Rp×n be given real matrices, and P0, P ∈ Sn

be symmetric matrices. Prove the following.

(a) Generalized upper observability Gramian. Suppose A is Hurwitz stable, ATP +
PA+ CTC � 0, and ATP0 + P0A+ CTC = 0. Then P0 � P .

(b) Generalized lower observability Gramian. Suppose A is Hurwitz stable, ATP +
PA+ CTC � 0, and ATP0 + P0A+ CTC = 0. Then P0 � P .

13



(c) Observability. [DP00] Suppose ATP+PA+CTC = 0, then any two of the following
statements imply the third:

i. A is Hurwitz stable,

ii. (A,C) is observable,

iii. P ≻ 0.

23. Newton’s method for ARE. Given matrices A ∈ Rn×n, B ∈ Sn
+, and C ∈ Sn, we wish to

find the unique positive definite matrix P ∈ Sn
++ (if it exists) satisfying the algebraic

Riccati equation,

R(P )
∆
= ATP + PA− PBP + C = 0,

where R : Sn → Sn is the Riccati operator. We solve R(P ) = 0 by Newton’s method,
assuming (A,B) is controllable, and (A,C) is observable.

(a) Show that the (directional) derivative of R in the matrix direction S ∈ Sn is

DR(P ) · S ∆
=

d

dt

(

R(P + tS)
)

∣

∣

∣

t=0

= (A−BP )TS + S(A− BP ). (8)

(b) Initial guess. [Sim81] Newton’s method is initialized with a point P0 for which
A − BP0 is Hurwitz. One way to obtain such an initial guess is to impose a
minimum positive decay rate on the matrix A−BP0 (see ex. 3). Given A, B, and
α > 0 we seek matrices Q and P0 satisfying

Q ≻ 0, Q(A− BP0)
T + (A−BP0)Q+ 2αQ � 0.

Show that by setting Y = −P0Q and eliminating Y we obtain the equivalent LMI

Q ≻ 0, σ ∈ R, Q(A+ αI)T + (A+ αI)Q− σBBT � 0,

from which we have Y = −σ
2
BT = −P0Q. Finally, we can take σ = 2 by

homogeneity. In fact, we can find a feasible starting point by solving two Lyapunov
equations: one for Q, the other for P0.

algorithm: find P0 ∈ Sn such that A−BP0 is Hurwitz
given: A ∈ Rn×n, B ∈ Sn

+, (A,B) controllable, decay rate 0 < α < ‖A‖
1. Solve for Q in Q(A+ αI)T + (A+ αI)Q = 2BBT

2. Solve for P0 in QTP0 + P0Q = B + BT

(c) Newton step. Suppose our current guess at timestep k is Pk. The Newton direction
is given by the solution ∆Pnt ∈ Sn of

DR(Pk) ·∆Pnt = −R(Pk).

14



Show that we can compute ∆Pnt by solving the Lyapunov equation

(A−BPk)
T∆Pnt +∆Pnt(A− BPk) = −R(Pk), (9)

provided A − BPk is Hurwitz and R(Pk) � 0. Explain how to solve (9) using
standard linear algebra operations like matrix multiplication and inversion.

(d) Exact line search. [BB98] To ensure feasibility of all iterates we will use a step
length t ∈ (0, 2) that minimizes ‖R(Pk + t∆Pnt)‖2F . Show that the optimal step
length at step k is a minimizer of the quartic polynomial

fk(t) = α(1− t)2 − 2β(1− t)t2 + γt4, (10)

where α, β, and γ are real numbers given by

α = ‖R(Pk)‖2F , β = Tr(R(Pk)Vk), γ = ‖Vk‖2F ,

and Vk = ∆PntB∆Pnt.

(e) Stopping criterion. The algorithm stops when the Newton decrement λk is small
enough. The Newton decrement λk is defined in terms of the instantaneous de-
crease of ‖R‖2F in the Newton direction,

−λ2
k =

d

dt
‖R(Pk + t∆Pnt)‖2F

∣

∣

∣

t=0
,

Show that λk =
√
2‖R(Pk)‖F .

(f) Putting these steps together, we obtain a Newton-style algorithm for solving the
ARE. Implement this method on the specific matrices

A =





0 1 0
0 −1 0
0 −1 −1



 , B =
1

3





0
0
1









0
0
1





T

, C =
[

1 0 0
]T [

1 0 0
]

and compare it to Matlab’s built-in method are(A,B,C).

algorithm: Newton’s method
given: A ∈ Rn×n, B ∈ Sn

+, C ∈ Sn, tolerance ǫ > 0,
(A,B) controllable, (A,C) observable.

initialize:
Find P0 such that A− BP0 is Hurwitz stable.
k := 0

repeat:
1. Newton step. Solve for ∆Pnt and λk

(A− BPk)
T∆Pnt +∆Pnt(A−BPk) = −R(Pk)
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λk :=
√
2‖R(Pk)‖F

2. Stopping criterion. quit if λk ≤ ǫ
3. Exact line search.

Vk := ∆PntB∆Pnt

α := ‖R(Pk)‖2F , β := Tr(R(Pk)Vk), γ := ‖Vk‖2F
Find the minimizer tk of the quartic polynomial

fk(t) = α(1− t)2 − 2β(1− t)t2 + γt4

4. Update.
Pk+1 := Pk + tk∆Pnt

k := k + 1
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Applications of second-order cone programming. Linear Algebra and its Appli-
cations, 284(1–3):193–228, 1998.

[Roc70] R. Tyrrell Rockafellar. Convex Analysis. Princeton University Press, 1970.

[Sim81] V. Sima. An efficient Schur method to solve the stabilizing problem. IEEE
Transactions on Automatic Control, 26(3):724–725, June 1981.

17


