Lecture 9. Introduction to Numerical
Techniques

lvan Papusha
CDS270-2: Mathematical Methods in Control and System Engineering

May 27, 2015

1/25

Logistics

e hw8 (last one) due today.
e do an easy problem or CYOA

e hw7 solutions posted online
e reading: Davis Ch1-3
e examples today mostly from Tim Davis’s book

o Trefethen and Bau, Numerical Linear Algebra is also a good
resource.

2/25

Convex optimization methods

We wish to solve the unconstrained minimization problem

minimize f(x).

e gradient descent: start with a guess xg for the optimum and update
Xkt1 7= Xk — teVF(xk),

where t; is a small step size.
o generally require step sizes to satisfy

Zt,3<oo, Ztk:oo.
k k

e convexity of f means algorithm converges to global minimum

e if f is not differentiable, replace Vf(xx) by a subgradient g € R",
which satisfies

f(y) > f(xx) + & (y —xk) forally € R".

3/25

Interior point methods
The main idea is to solve for x* in the optimality condition
Vi(x*) =0.

workhorse technique. in practice, converges in ~ 10 steps.

algorithm: Newton's method

given: a starting point x € dom f, tolerance € > 0.
repeat:
1. Compute the Newton step and decrement
DAxo = —V2f(x)7IVF(x), N2 :=VF(x)TV2f(x)"1VFf(x)
2. Stopping criterion. quit if \2/2 < .
3. Line search. choose step size t by backtracking line search
4. Update. x := x + tAxy:

4725

Adding constraints: barrier method
To solve the constrained optimization problem

minimize fo(x)
subject to fi(x) <0, i=1,....m

we use a barrier function ¢ : R” — R that goes to +o00 as x approaches
the boundary of the feasible set.

logarithmic barrier.
¢(x) = = _ log(—fi(x))
i=1

central path. solve the related unconstrained problem
minimize tfy(x) + ¢(x).
As t — oo, the optimizing solution x*(t) — x*.

5/25

Barriers for common cones

Barriers ¢ for conic constraints can be defined in terms of the generalized
logarithm),

$(x) = = Y hi(—fi(x)),
i=1
¢ Nonnegative orthant R’ :
P(x) = logxi, Vip(x)=(1/x1,...,1/x,)
i=1

e Second-order cone Q" = {(xo,x1) | |Ix1]l2 < x0}:
n—1
() = log (. zmﬁ)
i=1
e Positive semidefinite cone S7:
$(X) = logdet(X), Viy(X)=X""

6/25

On writing linear algebra software

M try not to

BLAS: Basic Linear Algebra Subprograms

)

e Level 1. norms, dot products, scalar-vector products O(
e Level 2. matrix-vector products, rank-one updates O(n2
o Level 3. matrix-matrix sums and products O(n?)

LAPACK: Linear Algebra PACKage

e QR factorization, SVD, eigenvalue problems
ATLAS: Automatically Tuned Linear Algebra Software
SuiteSparse: direct methods for sparse systems

)

e sparse matrix factorization, Cholesky decomposition, fill-reducing
orderings, GPU methods
e much of the suite is part of core Matlab

reference implementations often in fortran, many re-implementations exist

7/25

Sparse data structure

45 0 32 0
31 29 0 09
0 17 30 O
35 04 0 1.0

o highlighted zeros are structural zeros
e n,, = number of nonzeros in the matrix
e three ways to store the matrix

1. 2-dimensional array: O(mn) space, independent of sparsity
2. triplet format: list of triples (i, J, aj), O(3nn;) space
3. compressed column format: O(2n., + n) space

8/25

Triplet format

45 0 32 0
31 .29 0 09
0 17 30 O
35 04 0 1.0

(zero-based indexing in C code)

A:

int i [] =
int j [I =
double x []

A m

2 1 3 0 1 3 3 1 0 2
2, 0, 3, 2, 1, 0, 1, 3, 0, 1
3.0, 3 1 3 2 3 0 0 4 1

e multiple entries interpretation: if (i,/, a) and (/,j, 8) both appear in
the data structure, then the value of aj; is the sum o + 3.

e conceptually useful when first forming a matrix

e not particularly efficient structure for linear algebra operations

9/25

Compressed column format

45 0 32 0
31 .29 0 09
0 17 30 O
35 04 0 1.0

(zero-based indexing in C code)

A:

int p 1 =10, 3, 6, 8,
int i [] =q{0, 1, 3, 1, 2, 3, 0, 2, 1,
double x [] = { 4.5, 3.1, 3.5, 2.9, 1.7, 0.4, 3.2, 3.0, 0.9,

e pis an array of column pointers

e row indices of column j are stored in i[p[j]] through
ilplj+1]1-1]

o first entry p[0] is always zero, last entry p[n] is the number of
nonzero entries in the matrix

e access to a column is simple, access to a row (or tranposing) is
difficult

10 };
};

10 / 25

Sparse data structure

/* matrix in compressed column or triplet form */
typedef struct cs_sparse {
int nzmax; /* max number of entries */

int m; /* number of rows */

int n; /* number of columns */

int *p; /* col pointers (size n+1) or col indices (size nzmax) */
int *i; /* row indices, size nzmax */

double *x; /* numerical values, size nzmax */

int nz; /* number of entries in triplet matrix */

/* or -1 for compressed column */
} cs;

e handles both compressed column and triplet format
e p holds either column pointers (compressed column form) or column
indices (triplet form)
e memory management (reallocating *x and resetting nzmax) is up to
the algorithm
e some algorithms need a temporary workspace
e control systems running in-loop may need real time guarantees

11/ 25

Printing a compressed column matrix by columns

int cs_print (const cs *A, ...) {
int p, j, m, n, nzmax, nz, *Ap, *Ai;
double *Ax;

if (1A) { printf ("(null)\n"); return (0); }
n = A->m; n = A->n; Ap = A->p; Ai = A->i; Ax = A->x;
nzmax = A->nzmax; nz = A->nz;

if (nz < 0) { /* if matrix is compressed-column */
for (j = 0; j < mn; j++) {
printf("col %d : locatioms %d to %d\n", j, Ap[jl, Ap[j+1]1-1);
for (p = Ap[jl; p < Ap[j+1]1; p++) {
printf (" %d : %g\n", Ailpl, Ax 7 Ax[p]l : 1);
}
}
}
... /* handle triplet case here */
return (1);

12 /25

Matrix—vector multiplication

The compressed column format allows for efficient computation of
matrix—vector updates, e.g.,

y =Ax+y

guiding principle. exploit structural nonzeros to avoid needless work

w71 BRI
Y2 X2 Y2
. = A*l A*Q ce A*n . + .
\ | | : :
Ym Xn Ym

algorithm: gaxpy “general A times x plus y”

forj=0ton—1do
for each i for which a; # 0 do
Yi =yt ajX

13 /25

Matrix—vector multiplication

algorithm: gaxpy “general A times x plus y"

for j=0ton—1do
for each i for which a;; # 0 do
Yi=yi+ajx

int cs_gaxpy (const cs *A, const double *x, double *y) {
int p, i, j, n, *Ap, *Ai;

double *Ax;

if (1CS_CSC(A) || 'x || 'y) return (0); /* check inputs */

n = A->n; Ap = A->p; Ai = A->i; Ax = A->x;

for (j = 0; j < mn; j++) { /* for each column */

for (p = Ap[jl; p < Ap[j+1]; p++) { /* for nonzero row */
y[Ai[pl]l += Ax[p]l * x[j];
}
}

return (1); /* success */

14 /25

Solving triangular systems

We wish to solve Lx = b for x € R”, where L is a lower triangular n x n
matrix. Partition L and x into blocks,

/11 0 X1 b1
h1 Lan| |x b’
which leads to two equations

hixy = by
hi1x1 + Lyoxo = bo.

recursive substructure:
1. the first block (scalar) is x; = (b1/h1)

2. we can solve for x; € R"™! by solving the (n —1) x (n — 1)
triangular system
Looxo = bp — b1x1.

15/ 25

Solving triangular systems

We can unwind the tail recursion to obtain the triangular solve algorithm

algorithm: 1solve “lower triangular solve”
x:=b
forj=0ton—1do
Xj = X/ lj
for each i > j for which /;; # 0 do
Xi = x;j — ljx;

e since by and by are only used once, x can overwrite b in the
implementation

e saves the need to create a temporary workspace

16 / 25

Solving triangular systems

int cs_solve (const cs *L, double *x) {
int p, j, n, *Lp, *Li;

double *Lx;
n = L->n; Lp = L->p; Li = L->i; Lx = L->Xx;
if (!CS_CSC(L) || !'x) return (0); /* check inputs */

for (j = 0; j < mn; j++) {
x[j] /= Lx[Lp[jl];
for (p = Lpl[jl+1; p < Lp[j+1]; p++) {
x[Lilp]l]l -= Lx[pl * x[j];
}
}

return (1);

e accesses L columnwise
e assumes the diagonal entries of L are nonzero and present

e input x initially contains the righthandside b, and is overwritten with
the solution.

17/ 25

Solving general systems

Now we wish to solve the system Ax = b where A is a general matrix.
e lots of ways to do this

o generally all these involve some sort of factorization of A
e A unstructured: LU, LDU, QR, SVD
e A positive semidefinite: Cholesky (LLT, LDLT), diagonalization
(generally half the effort of the unstructured algorithm)
e permuted versions of these (more later)

e most of the work in interior point solvers is spent in this step

18 / 25

Example: LU decomposition
fact. Every matrix A € R"" can be written as
A= LU,
where L is lower triangular and U is upper triangular.

We can solve Ax = b by splitting into three steps:
1. factorization. find L and U such that A= LU.
2. forward solve. solve the lower triangular system

Ly = b.
3. backward solve. solve the upper triangular system

Ux=y.

19 /25

Sparse Cholesky factorization

Consider factoring downward arrow matrix A = L,L]
o pick A= AT € R20X20 nno(p)—58

e call using L_a=chol(A,’lower’)

A L,
0 0
L] L] L]
L] L] L]
L] L] L]
[] [] []
5 ° ° 5 °
L] L] L]
L] L] L]
[] [] []
L] L] L]
10 . ° 10 .
L] L] L]
[] [] []
L] L] L]
[] L] []
15 . . 15 .
[] [] []
L[] L] L]
L N []
o0 []
20 0000000000000 0000000 20/ 0000000000000 0000000

0

5 10 15 20
nz =58

0 5 10 15 20
nz =39

20/ 25

Sparse Cholesky factorization with permutation

now permute the entries of A to PAPT and rewrite L,L] = PAPT
e nnz(P*A*P’) =58
o call using L_b=chol (P*xA*P’,’lower’)

PAPT

10

15

20

21/25

Sparsity rule for Cholesky decomposition

x; Thm. 4.2: a;; # 0 implies l; # 0
Thm. 4.3: Ij; # 0 and ly; # 0 implies l; # 0
Zj Thus l; redundant for X = Reachp, (i)

Lk

Figure 4.1. Pruning the directed graph G, yields the elimination tree T

(From Davis, Ch 4)

22/25

Sparsity rule for Cholesky decomposition

original matrix A Cholesky factor L of A elimination tree of A
K .o IRE] @
3 *ee . D
5% e te s O,
e e e G, (¥ Q)
[) .. 89.. [) ..®89 o e
¢fetee on Cetetien| @ ® @ B

Figure 4.2. Example matriz A, factor L, and elimination tree

(From Davis, Ch 4)

23 /25

Fill-reducing orderings

Well developed theory for sparse operations see e.g., [Davis 2006]
e instead of solving Ax = b, solve new system
(PAPT)(Px) = Pb, P = permutation matrix

~——
=LLT

e then do two triangular solves for y and X
Ly=Pb, L'i=y — x=PTx

o finding optimal fill-reducing ordering is NP-complete

e minimum degree heuristic: at each step of Gaussian elimination
permute rows and columns to minimize the number of off-diagonal
nonzeros in pivot row and column

e lots of heuristics (AMD, COLAMD, METIS)

24 /25

Thanks!

25 /25

