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Logistics

e hw6 due this Wed, May 13

e do an easy problem or CYOA
e use catalog with date stamp > 05/06/2015
e part 3(d): uses Matlab and CVX

e hwb solutions posted online
e reading: Imibook Ch 4-6
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Control system

for a plant P and controller K we define the following signals

e exogenous inputs: w € R™
e actuator inputs: u € R™
e regulated outputs: z € R™
e sensed outputs: y € R™
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Common signal measures
Let y : [0,00) — R" be a signal
L. (peak) norm:

Il = max. Iyl = sup max ly(e)

L, (total energy) norm:

vl = ([ 07 sae)
1/2

(5 [ sUerstiords)  (Parseva

1/2

root-mean-square seminorm:

LT 1/2
— ; — T
1 llms = (Tlgnoo + [ v dt)
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Common system norms

Let H be a system with impulse response matrix h(t)

H, (RMS response to white noise):

1/2

IHIl> = (Trzlﬂ /Ooo Hjw)* H(jcw) dw)
= (z;Z |ty dw> "

0o 1/2
= <Tr/ h(t) T h(t) dt)
0
Ho (RMS or L; gain):
Hw .
IHlo = sup 12 g (HGw))
Iwlozo Wl
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Computing H;-norm
Consider the system

H: x=Ax+B,w, z=0GCx, x(0)=0.

e impulse response is h(t) = C,e**B,,, follows from w(t) = §(t) in
t
y(t)=¢C, [ B, w(r)dr.
o

e substitute impulse response into

|HIE = T ( / b Th(e) dt)

= Tr (B;/ AT CeM dtBW>
0

= Tr(B] WipsBw)
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Computing H;-norm
The H; norm of the system satisfies
IH13 = Tr(B,) WobsBu),

where W,ps is the observability Gramian, given by
A [T a7
Wops = / e tC] C et dt,
0

or equivalently, the solution to the Lyapunov equation

AT Wiops + WepsA+ CJ C, = 0.
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Controllability perspective

Using the cyclic property of Tr(-),

|HIZ = Tr ( / by Th(o) dt>

=Tr ( / Bl e’ tCT C,e™B, dt)
0

—Tr (cz / "B, Bl e” t dt CJ)
0

= TI’( Cz Wcontr CZT)»

where W ontr is the controllability Gramian,

(o)
A ATt T At
Wcont,:/ e” 'B,B, e dt,
0

or equivalently, the solution to the Lyapunov equation

WeontrA™ + AWeontr + By B, = 0.
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Lagrange duality

In fact, the following two SDPs are Lagrange duals of each other,

minimize  Tr(C,QC))
subject to Q > 0,

(1)
QAT + AQ+ B,B] =0
and
maximize Tr(B[ PB,)
subjectto P >0 (2)

ATP+PA+CTC, =0

e if strong duality obtains, then

T(C,Q*C]) =Tr(Bl P*B,)

e strong duality is implied by strict feasibility of (1) or (2)

... which
happens if A is stable.
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Strong duality in H, SDP

link to Hy norm. If strong duality obtains in (1) and (2), and either
P* > 0or Q> 0, then

IH|3 = Tr(C,Q*C]) = Tr(B] P*B,,).

proof. by strong duality, we have
Tr(C,Q*C]) = Tr(B] P*B,)
= Inf Tr(C.QC]) + Tr((QAT + AQ + B, B])P")

<Tr(CQR*CT) + Tr((Q*AT + AQ* + B, B])P¥)
< Tr(CzQ* CzT)v

thus all the inequalities hold with equality. If P* > 0, then
Q*AT + AQ* + B,B] =0,

e, Q = Weontr. (If Q* = 0 instead, we get P* = Wps.)
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Strong duality in H, SDP
fact. If Ais (Hurwitz) stable, then strong duality obtains in (1) and (2).
proof. if A is Hurwitz stable, there exists a matrix Qp > 0 such that
QAT + AQo + (¢/ + BuB,) =0,
where € > 0 is any positive number. Therefore
QAT +AQy + B,B] = —€el <0,

meaning (1) is strictly feasible. By Slater’s condition, we have strong
duality.
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Strong duality in H, SDP

fact. Suppose A is (Hurwitz) stable.
o if (A, By ) is controllable, then Q* > 0 and P* = Wps
e if (A, C,) is observable, then P* > 0 and Q* = Weontr

proof (first statement). since Q* is feasible in (1), it is a generalized
controllability Gramian, so it satisfies

Q* i Wcontn

and because (A, By, ) is controllable with A Hurwitz, we further have
Weontr > 0. Therefore Q* = Weontr = 0. From strong duality,

Tr(ATP*+ PPA+C]C)Q*) =0

implies ATP* + P*A+ C] C, = 0, thus, P* = W,s, as required.
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H, state feedback synthesis problem

Given the system

X =Ax+Byu+ By,w, z=Cx+Dyu, x(0)=0

find a state feedback input u = Kx to minimize the w-to-z H, norm.
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Interpretation: calculating the w-to-z H, norm
For constant state-feedback u = KXx, the closed loop system is

x=(A+ B,K)x+ B,w
z=(C, + D,yK)x

thus the w-to-z Hy norm is simply the energy of the output

E= /Oo 26)72(¢) dt,

with the choice w(t) = d(t)
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Calculating the w-to-z H, norm
Choosing w(t) = &(t) for the system

x=(A+ B,K)x+ Byw
z C, + D, K)x
x(0)

(

0

is the same as having a nonzero initial condition x(0) = B,,
% = (A+ B,K)x

z=(C, + D,uK)x
x(0) = B,

proof.

t
x(t) = e(AJrBuK)t.O_'_/ SAHBRNE=T B 5(r) dr
o
(A+BuK)l’ . B

= e w
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H, state feedback synthesis

In the language of the LMI (1), the w-to-z Hy norm is given by solving
the problem

minimize  Tr ((C; + D.uK)Q(C, + DnuK)T)
subjectto Q@ >0

QA+ B,K)" +(A+B,K)Q+ B,B] <0

o the objective is simulatenously the Hy norm, and the output energy
E we wish to minimize.

o if A+ B,K is stable, strong duality obtains
o if K is a variable, the problem is nonconvex
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Lyapunov function perspective
output energy minimization
x=Ax+ Byu, z=C,x+ Dyu (3)
where (A, B, C) is minimal, D] D,, = 0, and D], C, = 0. Given an initial

condition x(0) find an input u = Kx to minimize the output energy

E— /Oo 2(6)T2(t) dt.

fact. if there exists a storage function V(x) = x” Px, P = 0, and

d
EV(X) < —z"z, forall z,x,u = Kx satisfying (3),

then x(0)7 Px(0) is an upper bound on E.
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Lyapunov argument

Integrate 2 V/(x) < —z7z to get
T
V(x(T)) — V(x(0)) < —/ z"zdt, forall T>0.
0
Since V(x(T)) > 0, and this is true for all T, we therefore have

V(x(0)) > /000 z'zdt (= E).

e V(x(0)) = x(0) " Px(0) is an upper bound on the output energy

e to make output energy small, we minimize this upper bound
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Solution to problem

We wish to minimize the upper bound x(0)7 Px(0) subject to the
dissipation condition:

%V(X) < —z"z, forall z,x,u = Kx satisfying (3)

= x"Px+x"Px < —z"z, for all z,x,u = Kx satisfying (3)
— xT(A+ B,K)TPx+x"P(A+ B,K)x

< —x"(C, 4+ D,uK)"(C, + Dy K)x, for all x € R"
«— ATP+PA+ KB/ P+ PB,K+C]C,+ K" (D] D,,)K <0
> QAT + AQ + QKT B + B,KQ

+(GQ)(CQ) + QKT(D;,D)KQ < 0

where in the last step we multiplied on the left and right by @ = P!
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State feedback trick
If we define the variable Y = KQ, then we have
QAT +AQ+ QKTB] + B,KQ+ (C,Q)"(C,Q) + QKT (D],D,,)KQ < 0

s
QAT +AQ+Y'B + B, YT +(C,Q)"(C.Q) + YT (D],D,,)Y <0

Taking a Schur complement gives the LMI

QAT +AQ+YTB +B,YT (GQ+DY)T] _,
(C,Q+ DY) 1 =
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Output energy minimization summary

state feedback synthesis. solve the problem

minimize  x(0)T @~1x(0)
QAT +AQ+YTB/ +B,YT (GQ+D.Y)T] _,

subject to (C.Q+D,.Y) _ =<0,

Q>0
with variables @ = Q7 € R"™" and Y € R™*"

solution.

e the optimal value x(0)7(Q*)~1x(0) is an upper bound on the energy

o0
E:/ zTzdt
0

e the optimal state feedback is K = Y*(Q*)~!
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Bound on H_,-norm

Consider the system

H: x=Ax+B,w, z=CGCx, x(0)=0.

If there exists a storage function V : R” — R, such that
V4+zTz—ywTw <0, V(0)=0
for all x and w satisfying (4), then ||H||% < 7.
proof. integrate to obtain
| e de+al < 5wl

>0
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Quadratic storage function
For V(x) = x" Px, P = 0, the condition
V+zlz—ywTw<0

for all x and w satisfying (4), is the same as

(Ax + BWW)TPX + XTP(AX + Byw) + XT(CZTCZ)X —yw'w <0.

This translates to the LMI:

T T
AP+ PA+C C, PB, <0

P =0, BTP SyiEl
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Calculating the H,.-norm of a system
Now consider minimizing the upper bound +,

minimize  y
subjectto P >0
ATP+PA+C]C, PB,
A <0.
BIP oyl
fact. (Kalman—Yakubovich-Popov) the optimal solution to the problem
above is v* = ||H||%, = || C.(sl — A)71B,||%.

e quadratic storage function is enough

e worst case gain is the Ho,-norm (suitably squared):

NN

1zl

Izl < ylwl3 <= [HI% = sup

<~
Iwlla0 [[w]]

NN
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H_, state feedback synthesis problem

Given the system
X =Ax+Byu+ By,w, z=Cx+Dyu, x(0)=0

find a state feedback input v = Kx to minimize the w-to-z H,, norm.
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H_, state feedback solution

Once again, we minimize the H,, norm upper bound for the closed loop
system

x=(A+ B,K)x + Byw

z=(C,+ D,uK)x
x(0) =0,

i.e., we wish to solve the nonconvex problem

minimize 7y
subjectto P >0
(A+B,K)TP+ P(A+ B,K) +(C, + D,,K)"(C, + D,,K) PB,,
BIP | 20
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H.. state feedback synthesis solution
A sequence of manipulations with Y = KQ gives the equivalent problem
minimize 7y
subjectto Q >0

AQ+ QAT+ B,Y + YTB] + BB (CQ+DuY)T] _
CZQ+Dqu _’7/ -

e optimal controller is K = Y*(Q*)1
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Time domain properties
Let's explore the input to state properties of the LDI
x=A(t)x + Bu(t)w, [A(t) Bu(t)] € Q. (5)

Consider the following subsets of R":

e reachable set with unit-energy input:

x, w satisfy (5), x(0)=0, }

Rue = T) eR”
© {X( )€ fOTWTWdtSl, T>0

e reachable set with unit-peak input:

_ a| x,w satisfy (5), x(0)=0,
RUP_{X(T)GR wiw<1l T2>0

o ellipsoid parameterized by P:

E={xeR"|x"Px<1}
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Bounding R, with an ellipsoid

The following inclusion holds:
o Rue C & if there exists V(x) = x" Px, P = 0, such that

V(x) <w'w, forall x, w satisfying (5).

proof. suppose such V exists and x(T) € Rye, where (recall)

Rue = {x( T)eR"

x, w satisfy (5), x(0)=0,
Jfwiwdt <1, T>0 [

For this landing state x(T) and any input w that gets us there,

V(X(T))—V(X(O)):/O V(x(t))dtg/o wTwdt < 1,

therefore x(T)TPx(T) <1, ie, x(T) € &
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Bounding R, with an ellipsoid

The following inclusion holds:
® Ryp C & if there exists V(x) = xTPx, P > 0, such that

V(x) <0, forall x,w satisfying (5),w’w < 1, and V(x) > 1.
proof idea. for any admissible input (satisfying pointwise unit peak
constraints w’w < 1), as soon as V(x(T)) > 1 at some time T, then
for all times t thereafter,

V(x(t)) < V(x(T)), forallt>T.

In other words, trajectories with an admissible input cannot exit the
1-sublevel set {x | V(x) < 1}.
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Ellipsoidal bounds on reachable sets

For LTI systems Q = [A, B], the reachability conditions can be rewritten
e Ry C &: there exists V(x) = x" Px, P = 0, such that
V(x) <wTw, forall x,w satisfying (5).
is equivalent to feasibility of

ATP+PA PB,

P 0, BTP

=0.

o Ryp C &: there exists V(x) = x" Px, P = 0, such that

V(x) <0, forall x,w satisfying (5),w’w < 1, and V/(x) > 1.
is implied by feasibility of the bilinear matrix inequality

ATP+PA+aP PB,

BT P —at| 20
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