
Lecture 7. LMI approaches to H2, H∞

problems

Ivan Papusha

CDS270–2: Mathematical Methods in Control and System Engineering

May 11, 2015

1 / 31



Logistics

• hw6 due this Wed, May 13

• do an easy problem or CYOA
• use catalog with date stamp ≥ 05/06/2015
• part 3(d): uses Matlab and CVX

• hw5 solutions posted online

• reading: lmibook Ch 4–6
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Control system

w

u

z

y

P

K

for a plant P and controller K we define the following signals

• exogenous inputs: w ∈ Rnw

• actuator inputs: u ∈ Rnu

• regulated outputs: z ∈ Rnz

• sensed outputs: y ∈ Rny
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Common signal measures

Let y : [0,∞) → Rn be a signal

L∞ (peak) norm:

‖y‖∞ = max
1≤i≤n

‖yi‖∞ = sup
t≥0

max
1≤i≤n

|yi (t)|

L2 (total energy) norm:

‖y‖2 =

(∫ ∞

0

y(t)T y(t) dt

)1/2

=

(
1

2π

∫ ∞

−∞

ŷ(jω)∗ŷ(jω) dω

)1/2

(Parseval)

root-mean-square seminorm:

‖y‖rms =

(

lim
T→∞

1

T

∫ T

0

y(t)T y(t) dt

)1/2
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Common system norms

Let H be a system with impulse response matrix h(t)

H2 (RMS response to white noise):

‖H‖2 =

(

Tr
1

2π

∫ ∞

0

H(jω)∗H(jω) dω

)1/2

=

(

1

2π

n∑

i=1

∫ ∞

−∞

σi (H(jω))2 dω

)1/2

=

(

Tr

∫ ∞

0

h(t)Th(t) dt

)1/2

H∞ (RMS or L2 gain):

‖H‖∞ = sup
‖w‖2 6=0

‖Hw‖2
‖w‖2

= sup
ω

σmax(H(jω))
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Computing H2-norm

Consider the system

H : ẋ = Ax + Bww , z = Czx , x(0) = 0.

• impulse response is h(t) = Cze
AtBw , follows from w(t) = δ(t) in

y(t) = Cz

∫ t

0−
eA(t−τ)Bww(τ) dτ.

• substitute impulse response into

‖H‖22 = Tr

(∫ ∞

0

h(t)Th(t) dt

)

= Tr

(

BT
w

∫ ∞

0

eA
T tCT

z Cze
At dt Bw

)

= Tr(BT
w WobsBw )
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Computing H2-norm

The H2 norm of the system satisfies

‖H‖22 = Tr(BT
w WobsBw ),

where Wobs is the observability Gramian, given by

Wobs
∆
=

∫ ∞

0

eA
T tCT

z Cze
At dt,

or equivalently, the solution to the Lyapunov equation

ATWobs +WobsA+ CT
z Cz = 0.
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Controllability perspective

Using the cyclic property of Tr(·),

‖H‖22 = Tr

(∫ ∞

0

h(t)Th(t) dt

)

= Tr

(∫ ∞

0

BT
w eA

T tCT
z Cze

AtBw dt

)

= Tr

(

Cz

∫ ∞

0

eAtBwB
T
w eA

T t dt CT
z

)

= Tr(CzWcontrC
T
z ),

where Wcontr is the controllability Gramian,

Wcontr
∆
=

∫ ∞

0

eA
T tBwB

T
w eAt dt,

or equivalently, the solution to the Lyapunov equation

WcontrA
T + AWcontr + BwB

T
w = 0.
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Lagrange duality

In fact, the following two SDPs are Lagrange duals of each other,

minimize Tr(CzQC
T
z )

subject to Q � 0,
QAT + AQ + BwB

T
w � 0

(1)

and
maximize Tr(BT

w PBw )
subject to P � 0

ATP + PA+ CT
z Cz � 0

(2)

• if strong duality obtains, then

Tr(CzQ
⋆CT

z ) = Tr(BT
w P⋆Bw )

• strong duality is implied by strict feasibility of (1) or (2) . . . which
happens if A is stable.
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Strong duality in H2 SDP

link to H2 norm. If strong duality obtains in (1) and (2), and either
P⋆ ≻ 0 or Q⋆ ≻ 0, then

‖H‖22 = Tr(CzQ
⋆CT

z ) = Tr(BT
w P⋆Bw ).

proof. by strong duality, we have

Tr(CzQ
⋆CT

z ) = Tr(BT
w P⋆Bw )

= inf
Q�0

Tr(CzQC
T
z ) + Tr((QAT + AQ + BwB

T
w )P⋆)

≤ Tr(CzQ
⋆CT

z ) + Tr((Q⋆AT + AQ⋆ + BwB
T
w )P⋆)

≤ Tr(CzQ
⋆CT

z ),

thus all the inequalities hold with equality. If P⋆ ≻ 0, then

Q⋆AT + AQ⋆ + BwB
T
w = 0,

i.e., Q⋆ = Wcontr. (If Q
⋆ ≻ 0 instead, we get P⋆ = Wobs.)
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Strong duality in H2 SDP

fact. If A is (Hurwitz) stable, then strong duality obtains in (1) and (2).

proof. if A is Hurwitz stable, there exists a matrix Q0 ≻ 0 such that

Q0A
T + AQ0 + (ǫI + BwB

T
w ) = 0,

where ǫ > 0 is any positive number. Therefore

Q0A
T + AQ0 + BwB

T
w = −ǫI ≺ 0,

meaning (1) is strictly feasible. By Slater’s condition, we have strong
duality.
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Strong duality in H2 SDP

fact. Suppose A is (Hurwitz) stable.

• if (A,Bw ) is controllable, then Q⋆ ≻ 0 and P⋆ = Wobs

• if (A,Cz) is observable, then P⋆ ≻ 0 and Q⋆ = Wcontr

proof (first statement). since Q⋆ is feasible in (1), it is a generalized
controllability Gramian, so it satisfies

Q⋆ � Wcontr,

and because (A,Bw ) is controllable with A Hurwitz, we further have
Wcontr ≻ 0. Therefore Q⋆ � Wcontr ≻ 0. From strong duality,

Tr((ATP⋆ + P⋆A+ CT
z Cz)Q

⋆) = 0

implies ATP⋆ + P⋆A+ CT
z Cz = 0, thus, P⋆ = Wobs, as required.
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H2 state feedback synthesis problem

w

u

z

y = x

P

K

Given the system

ẋ = Ax + Buu + Bww , z = Czx + Dzuu, x(0) = 0

find a state feedback input u = Kx to minimize the w -to-z H2 norm.
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Interpretation: calculating the w-to-z H2 norm

For constant state-feedback u = Kx , the closed loop system is

ẋ = (A+ BuK )x + Bww

z = (Cz + DzuK )x

thus the w -to-z H2 norm is simply the energy of the output

E =

∫ ∞

0

z(t)T z(t) dt,

with the choice w(t) = δ(t)
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Calculating the w-to-z H2 norm

Choosing w(t) = δ(t) for the system

ẋ = (A+ BuK )x + Bww

z = (Cz + DzuK )x

x(0) = 0

is the same as having a nonzero initial condition x(0) = Bw

ẋ = (A+ BuK )x

z = (Cz + DzuK )x

x(0) = Bw ,

proof.

x(t) = e(A+BuK)t · 0 +

∫ t

0−
e(A+BuK)(t−τ)Bw · δ(τ) dτ

= e(A+BuK)t · Bw
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H2 state feedback synthesis

In the language of the LMI (1), the w -to-z H2 norm is given by solving
the problem

minimize Tr
(
(Cz + DzuK )Q(Cz + DzuK )T

)

subject to Q � 0
Q(A+ BuK )T + (A+ BuK )Q + BwB

T
w � 0

• the objective is simulatenously the H2 norm, and the output energy
E we wish to minimize.

• if A+ BuK is stable, strong duality obtains

• if K is a variable, the problem is nonconvex
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Lyapunov function perspective

output energy minimization

ẋ = Ax + Buu, z = Czx + Dzuu (3)

where (A,B ,C ) is minimal, DT
zuDzu ≻ 0, and DT

zuCz = 0. Given an initial
condition x(0) find an input u = Kx to minimize the output energy

E =

∫ ∞

0

z(t)T z(t) dt.

fact. if there exists a storage function V (x) = xTPx , P ≻ 0, and

d

dt
V (x) ≤ −zT z , for all z , x , u = Kx satisfying (3),

then x(0)TPx(0) is an upper bound on E .
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Lyapunov argument

Integrate d
dt
V (x) ≤ −zT z to get

V (x(T ))− V (x(0)) ≤ −

∫ T

0

zT z dt, for all T ≥ 0.

Since V (x(T )) ≥ 0, and this is true for all T , we therefore have

V (x(0)) ≥

∫ ∞

0

zT z dt (= E ).

• V (x(0)) = x(0)TPx(0) is an upper bound on the output energy

• to make output energy small, we minimize this upper bound
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Solution to problem

We wish to minimize the upper bound x(0)TPx(0) subject to the
dissipation condition:

d

dt
V (x) ≤ −zT z , for all z , x , u = Kx satisfying (3)

⇐⇒ ẋTPx + xTPẋ ≤ −zT z , for all z , x , u = Kx satisfying (3)

⇐⇒ xT (A+ BuK )TPx + xTP(A+ BuK )x

≤ −xT (Cz + DzuK )T (Cz + DzuK )x , for all x ∈ Rn

⇐⇒ ATP + PA+ KTBT
u P + PBuK + CT

z Cz + KT (DT
zuDzu)K � 0

⇐⇒ QAT + AQ + QKTBT
u + BuKQ

+ (CzQ)T (CzQ) + QKT (DT
zuDzu)KQ � 0

where in the last step we multiplied on the left and right by Q = P−1
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State feedback trick

If we define the variable Y = KQ, then we have

QAT +AQ +QKTBT
u +BuKQ + (CzQ)T (CzQ) +QKT (DT

zuDzu)KQ � 0

⇐⇒

QAT + AQ + Y TBT
u + BuY

T + (CzQ)T (CzQ) + Y T (DT
zuDzu)Y � 0

Taking a Schur complement gives the LMI

[
QAT + AQ + Y TBT

u + BuY
T (CzQ + DzuY )T

(CzQ + DzuY ) −I

]

� 0
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Output energy minimization summary

state feedback synthesis. solve the problem

minimize x(0)TQ−1x(0)

subject to

[
QAT + AQ + Y TBT

u + BuY
T (CzQ + DzuY )T

(CzQ + DzuY ) −I

]

� 0,

Q ≻ 0

with variables Q = QT ∈ Rn×n and Y ∈ Rnu×n

solution.

• the optimal value x(0)T (Q⋆)−1x(0) is an upper bound on the energy

E =

∫ ∞

0

zT z dt

• the optimal state feedback is K = Y ⋆(Q⋆)−1
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Bound on H∞-norm

Consider the system

H : ẋ = Ax + Bww , z = Czx , x(0) = 0. (4)

If there exists a storage function V : Rn → R+ such that

V̇ + zT z − γwTw ≤ 0, V (0) = 0

for all x and w satisfying (4), then ‖H‖2∞ ≤ γ.

proof. integrate to obtain

∫ ∞

0

V̇ (x(t)) dt

︸ ︷︷ ︸

≥0

+‖z‖22 ≤ γ‖w‖22.
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Quadratic storage function

For V (x) = xTPx , P ≻ 0, the condition

V̇ + zT z − γwTw ≤ 0

for all x and w satisfying (4), is the same as

(Ax + Bww)TPx + xTP(Ax + Bww) + xT (CT
z Cz)x − γwTw ≤ 0.

This translates to the LMI:

P ≻ 0,

[
ATP + PA+ CT

z Cz PBw

BT
w P −γI

]

� 0.
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Calculating the H∞-norm of a system

Now consider minimizing the upper bound γ,

minimize γ

subject to P ≻ 0
[
ATP + PA+ CT

z Cz PBw

BT
w P −γI

]

� 0.

fact. (Kalman–Yakubovich–Popov) the optimal solution to the problem
above is γ⋆ = ‖H‖2∞ = ‖Cz(sI − A)−1Bw‖

2
∞.

• quadratic storage function is enough

• worst case gain is the H∞-norm (suitably squared):

‖z‖22 ≤ γ‖w‖22 ⇐⇒ ‖H‖2∞ = sup
‖w‖2 6=0

‖z‖22
‖w‖22

≤ γ
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H∞ state feedback synthesis problem

w

u

z

y = x

P

K

Given the system

ẋ = Ax + Buu + Bww , z = Czx + Dzuu, x(0) = 0

find a state feedback input u = Kx to minimize the w -to-z H∞ norm.
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H∞ state feedback solution

Once again, we minimize the H∞ norm upper bound for the closed loop
system

ẋ = (A+ BuK )x + Bww

z = (Cz + DzuK )x

x(0) = 0,

i.e., we wish to solve the nonconvex problem

minimize γ

subject to P ≻ 0
[
(A+ BuK )TP + P(A+ BuK ) + (Cz + DzuK )T (Cz + DzuK ) PBw

BT
w P −γI

]

� 0.
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H∞ state feedback synthesis solution

A sequence of manipulations with Y = KQ gives the equivalent problem

minimize γ

subject to Q ≻ 0
[
AQ + QAT + BuY + Y TBT

u + BwB
T
w (CzQ + DzuY )T

CzQ + DzuY −γI

]

� 0.

• optimal controller is K = Y ⋆(Q⋆)−1
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Time domain properties

Let’s explore the input to state properties of the LDI

ẋ = A(t)x + Bw (t)w ,
[
A(t) Bw (t)

]
∈ Ω. (5)

Consider the following subsets of Rn:

• reachable set with unit-energy input:

Rue =

{

x(T ) ∈ Rn

∣
∣
∣
∣

x ,w satisfy (5), x(0) = 0,
∫ T

0
wTw dt ≤ 1, T ≥ 0

}

• reachable set with unit-peak input:

Rup =

{

x(T ) ∈ Rn

∣
∣
∣
∣

x ,w satisfy (5), x(0) = 0,
wTw ≤ 1, T ≥ 0

}

• ellipsoid parameterized by P :

E = {x ∈ Rn | xTPx ≤ 1}
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Bounding Rue with an ellipsoid

The following inclusion holds:

• Rue ⊆ E if there exists V (x) = xTPx , P ≻ 0, such that

V̇ (x) ≤ wTw , for all x ,w satisfying (5).

proof. suppose such V exists and x(T ) ∈ Rue, where (recall)

Rue =

{

x(T ) ∈ Rn

∣
∣
∣
∣

x ,w satisfy (5), x(0) = 0,
∫ T

0
wTw dt ≤ 1, T ≥ 0

}

.

For this landing state x(T ) and any input w that gets us there,

V (x(T ))− V (x(0)) =

∫ T

0

V̇ (x(t)) dt ≤

∫ T

0

wTw dt ≤ 1,

therefore x(T )TPx(T ) ≤ 1, i.e., x(T ) ∈ E
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Bounding Rup with an ellipsoid

The following inclusion holds:

• Rup ⊆ E if there exists V (x) = xTPx , P ≻ 0, such that

V̇ (x) ≤ 0, for all x ,w satisfying (5),wTw ≤ 1, and V (x) ≥ 1.

proof idea. for any admissible input (satisfying pointwise unit peak
constraints wTw ≤ 1), as soon as V (x(T )) ≥ 1 at some time T , then
for all times t thereafter,

V (x(t)) ≤ V (x(T )), for all t ≥ T .

In other words, trajectories with an admissible input cannot exit the
1-sublevel set {x | V (x) ≤ 1}.
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Ellipsoidal bounds on reachable sets

For LTI systems Ω = [A,B], the reachability conditions can be rewritten

• Rue ⊆ E : there exists V (x) = xTPx , P ≻ 0, such that

V̇ (x) ≤ wTw , for all x ,w satisfying (5).

is equivalent to feasibility of

P ≻ 0,

[
ATP + PA PBw

BT
w P −I

]

� 0.

• Rup ⊆ E : there exists V (x) = xTPx , P ≻ 0, such that

V̇ (x) ≤ 0, for all x ,w satisfying (5),wTw ≤ 1, and V (x) ≥ 1.

is implied by feasibility of the bilinear matrix inequality

P ≻ 0, α ≥ 0,

[
ATP + PA+ αP PBw

BT
w P −αI

]

� 0.
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