Lecture 4. Convex Optimization and Duality
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Logistics
e hw3 due this Wed, Apr 22
e do an easy problem or CYOA
e hw2 solutions posted online
e Wed lecture only: 2-2:55pm (243 Annenberg)

e continue reading: Imibook, Ch 1-2
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Convexity
convex set. a set C is convex if x,y € C implies
Ox+(1—-0)yecC
for all 6 € [0,1].
convex function. a function f : R” — R is convex if its epigraph
epi(f) = {(x,t) | x € dom(f),f(x) <t} CR" xR
is a convex set, or equivalently if
F(Ox+ (1= 0)y) < 0f(x) + (1 - 0)f(y)
for all 6 € [0,1] and x, y € dom(f).

concave function. g is concave if —g is convex.
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Why convexity?

Given a (proper) convex function f : R” — R

e for every x € dom(f), there exists a subgradient g € R", which
defines a global affine underestimator of f at x,

fly) > f(x) +gT(y —x), forallyeR"

e every local minimum is a global minimum (effective algorithms)

e calculus of convex functions
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Composition rule

Define the composition

f(x) = h(g1(x), g2(x), - . ., gk(x)),

where h: RX — R is convex, and g; : R” — R. Suppose that for each i,
one of the following holds:

e his nondecreasing in the ith argument, and g; is convex
e his nonincreasing in the ith argument, and g; is concave
o g; is affine

Then the function f is convex.
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Example

L x=2p

Fx,y) = \ -
2

{x + y}
y
e +: R x R — R is nondecreasing in both arguments (affine)

e || -]|2 : R” — R is nondecreasing in all arguments (convex)

o g(z1,2) = z?/z is convex in (z1, ) for zo > 0, and nonincreasing
in z

f is convex over (x,y) € R x Ry
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Standard form convex problem

minimize  fo(x)
subject to  fi(x) <0, i=1,...

e variable is x € R”

e domain of definition is D = (I, dom(f;) N(N7_; dom(h;) C R"
e fy is objective

e if fo(x) =0, then problem is a feasibility problem

e ,:R" — Rareconvex, i =0,...,m

e h; : R" — R are affine, i =1,...,p

e x* is an optimizing point (if it exists)

e optimal (primal) value is

A [ f(x*), if feasible and x* exists
= 00, otherwise
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Lagrangian

m

Lx, A v) 2 f(x) + D Nifilx) + Z vihi(x)

i=1

e real-valued function defined for

e xeD
L4 )\iZO,i:].,...,m
e v,eR i=1,...,p

e under-approximation property: if x is feasible, and A\; > 0,

p
L(x,\,v) = fo(x —&-ZAf —l—ZV,-h,-(x)

<0 =0
< fo(x)
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Dual function

A .
g(\,v) _X”e];) L(x, A\, v)
m P
= inf < fc ifi ihi
X'QD{ O(X)+’;>\ (X)+’;V (X)}
<
< inf fo(x)
= p*

e dual function is lower bound on optimal value

e best (largest) lower bound:

"= sup g(\v)
A=0,vERP
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Primal and dual problems

primal: dual:
minimize  fy(x) ma>-<imize g(\v) _
subject to fi(x) <0, i=1,...,m subjectto X;>0, i=1,....m
hi(x)=0, i=1,...,p
o weak duality: d* < p* always obtains
g\ v) <L(x,A\v), forallxeD
< L(x*, )\ v)
< fo(x*) = p* (then take supremum)
e strong duality: d* = p* holds with a constraint qualification

e Slater’s condition: suppose primal problem is convex, and fi,..., fx
are affine, then strong duality holds if there exists an x

f(x)<0, i=1,....k
fix) <0, i=k+1,....m
hi(x)=0, i=1,...,p
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KKT conditions

Let fo,..., fm, h1,..., h, be differentiable, x* and (A*,v*) be any primal
and dual optimal points, p* = d*, then these points necessarily satisfy

1. primal feasibility:

2. dual feasibility:
AF >0, i=1,....m

3. complementary slackness:
ANifi(x*)=0, i=1,...,m

4. stationarity of Lagrangian:
m P
VH(x*) + Y AVAKX) + Y v Vhi(x*) =0
i=1 i=1
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KKT results

f;, h; differentiable
x*, (\*,v*) primal-dual optimal 3 == KKT holds
p*=d*

f;, h; differentiable

f; convex, h; affine

x*, (N, v*) satsifies KKT
Slater's condition holds

x*, (A", v*) primal-dual optimal
— p* = d*
dual optimum attained

for (much) more, see R. T. Rockafellar Convex Analysis
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Valid convex optimization problems

objective.
e minimize { convex function }

e maximize { concave function }

constraints.
o { convex function } < { concave function }
e { concave function } > { convex function }

o { affine function } = { affine function }
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Example: linear program (LP)

The standard form LP is
minimize ¢’ x
subjectto Ax=b, x>0

with variable x € R”
e lLagrangian:

L(x,\,v) =c"x = A"x+vT(Ax — b)
=(ATv+c—N)"x—v"b
e dual function:

g(\v)

inf {(ATv+c—A)"x—v"b}
B —vTh fATv+c—A=0
—00 otherwise

o related dual problem:

maximize —v'b
subject to ATv+c>0
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Example: quadratic program (QP) w/ equality constraints

Consider the quadratic program

minimize  x'Px+c'x
subject to Ax=0b

with x € R" a variable, and P = PT >0

e if b & range(A), then primal is infeasible
L(x,v) =x"Px+c"x+vT(Ax — b)
=x"Px+(ATv4+c)"x—vTh
e taking a gradients gives necessary conditions for optimality
VL(x*,v*) = (P+PT)x* + (ATv* +¢c) =0

e optimal primal and dual variables are solutions (when they exist) to

L
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Example: open loop control of a vehicle network

minimize >l ||2+MZZ||X (k) = xD(k) = ryl3

i=1 k=01i,j=1

(k+1) = ADXxD (k) + BOuD (k) + cD(k),
i=1,...,N, k=0,...,T—1,

xNO)y=20, i=1,...,N

N i
% dim1 x{ )(T) =

M*i

X

=0
subject to  x(?)

N vehicles, each with state x() € R? and input u() € R

e minimize total fuel

penalize deviation from prescribed geometry r;; € R2

each vehicle obeys discrete-time affine dynamics

x(’)(k +1)= A(i)x(i)(k) + B(i)u(i)(k) + C(i)(k)

initial condition z() € R?, final average position w € R?
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Example: geometric program (GP)

posynomial. a function f : R" — R of the form

f(X17~--a E CkXy X1k a2k.._ nk7

where ¢; > 0 and a; € R, e.g., 0.7 + 2x1/x3 + x2-3
monomial. a posynomial with one term (t = 1), e.g., 2.3(x1/x2)°®

geometric program. an optimization problem of the form

minimize  fo(x)

subject to fi(x) <1, i=1,....m
gi(x)=1, i=1...,p
x>0, i=1,...,n

where f; are posynomials and g; are monomials
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Exponential form of GP

Standard form GP

minimize  fo(x)

subject to fi(x) <1, i=1,....m
g(x)=1, i=1...,p
x>0, i=1,...,n

with variable x € R"
o define new variables y; = log x; and by = log ¢k

a1k

t
h(y) = log (f(e”,...,€")) = log (Z eakTy+bk> , Ak =
k=1

dnk
e equivalent convex formulation in variable y € R”

minimize  log(f(e™, ..., e"))
subject to log(fi(e”,...,e")) <0, i=1,....,m
log(gi(e,...,e)) =0, i=1,...,p
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Example: second order cone program (SOCP)

second order cone. a subset Q" of R" given by

V Q" = {(x0,x1) €Rx R" | |Ixt]l2 < x0}

X1 X2

second order cone program. an optimization problem of the form
minimize 7 x
subject to  ||[Aix+bil2 < c¢'x+d;, i=1,...,m
e a point x is feasible if and only if

C-T d,' .
{AIT] x + {b] con (ni = 1 4 number of rows of A;)
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Relaxation and restriction

minimize
subject to

suppose S CC C T, then
. < <
0= P00 = bk

e C is original feasible set
e T is relaxation

e S is restriction

common practice if C is not convex
or is too complicated to describe

f(x)
xelC

Rn
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Affine function over convex set

minimize ¢’ x

subject to x €C

if C is compact and objective is affine, an optimal point exists on the
boundary OC of the feasible set

also works for maximization of a convex objective

e LP: C is a polyhedron, x* can be a vertex
SDP: C is a slice of S

main idea behind many practical algorithms (simplex. .. )
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Conic optimization

minimize  fo(x)
subject to  A(x) = b
xek

e generalization of LP, SOCP, SDP
variable is x € R”

e fy is convex objective, often affine
e domain is a convex cone C

affine constraints A: R" — K
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Epigraph trick
e can arrange for objective to be linear by introducing an extra variable

minimize  f(x)
subjectto x €C

I
minimize vy
subject to  f(x) <«
xeC

e new variable is (x,7)

o if epi(f) and C are cone representable, the result is a conic program
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Cone representations: SDP

sets. a convex set C C R" is SDP representable if there exists an affine
mapping A : R” x R™ — SP such that

xelC <= FJueR™, A(x,u) = 0.

functions. a convex function f : R” — R is SDP representable if its
epigraph epi(f) is an SDP representable set.
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Examples: SDP representable functions

e absolute value: f(x) = |x|

X<t {XH 0 }>o

0 X+t

e euclidean norm: f(x) = ||x||2

-
x[p <t <= -x'x>0 <— tx =0
X

o largest eigenvalue: f(X) = Amax(X)
Amax(X) <t = tI-X =0
o sum of k largest eigenvalues: f(X) = A(X) + - 4+ M(X)

t—ks—Tr(Z)>0
f(X)<t <= 3Z=2Z" ands e R with Z>0
Z—X+sl>0
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