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Logistics

• hw3 due this Wed, Apr 22

• do an easy problem or CYOA

• hw2 solutions posted online

• Wed lecture only: 2–2:55pm (243 Annenberg)

• continue reading: lmibook, Ch 1–2
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Convexity

convex set. a set C is convex if x , y ∈ C implies

θx + (1− θ)y ∈ C

for all θ ∈ [0, 1].

convex function. a function f : Rn → R is convex if its epigraph

epi(f ) = {(x , t) | x ∈ dom(f ), f (x) ≤ t} ⊆ Rn × R

is a convex set, or equivalently if

f (θx + (1− θ)y) ≤ θf (x) + (1− θ)f (y)

for all θ ∈ [0, 1] and x , y ∈ dom(f ).

concave function. g is concave if −g is convex.
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Why convexity?

Given a (proper) convex function f : Rn → R

• for every x ∈ dom(f ), there exists a subgradient g ∈ Rn, which
defines a global affine underestimator of f at x ,

f (y) ≥ f (x) + gT (y − x), for all y ∈ Rn

• every local minimum is a global minimum (effective algorithms)

• calculus of convex functions
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Composition rule

Define the composition

f (x) = h(g1(x), g2(x), . . . , gk(x)),

where h : Rk → R is convex, and gi : R
n → R. Suppose that for each i ,

one of the following holds:

• h is nondecreasing in the ith argument, and gi is convex

• h is nonincreasing in the ith argument, and gi is concave

• gi is affine

Then the function f is convex.
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Example

f (x , y) =

∥
∥
∥
∥

[
x + y

y

]∥
∥
∥
∥
2

+
(x − 2)2

y

• + : R× R → R is nondecreasing in both arguments (affine)

• ‖ · ‖2 : R
n → R is nondecreasing in all arguments (convex)

• g(z1, z2) = z21/z2 is convex in (z1, z2) for z2 > 0, and nonincreasing
in z2

f is convex over (x , y) ∈ R× R++
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Standard form convex problem

minimize f0(x)
subject to fi (x) ≤ 0, i = 1, . . . ,m

hi (x) = 0, i = 1, . . . , p

• variable is x ∈ Rn

• domain of definition is D =
⋂m

i=0 dom(fi ) ∩
⋂p

i=1 dom(hi ) ⊆ Rn

• f0 is objective

• if f0(x) ≡ 0, then problem is a feasibility problem

• fi : R
n → R are convex, i = 0, . . . ,m

• hi : R
n → R are affine, i = 1, . . . , p

• x⋆ is an optimizing point (if it exists)

• optimal (primal) value is

p⋆
∆
=

{
f (x⋆), if feasible and x⋆ exists
∞, otherwise
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Lagrangian

L(x , λ, ν)
∆
= f0(x) +

m∑

i=1

λi fi (x) +

p
∑

i=1

νihi (x)

• real-valued function defined for

• x ∈ D

• λi ≥ 0, i = 1, . . . ,m

• νi ∈ R, i = 1, . . . , p

• under-approximation property: if x is feasible, and λi ≥ 0,

L(x , λ, ν) = f0(x) +

m∑

i=1

λi fi (x)

︸ ︷︷ ︸

≤0

+

p
∑

i=1

νihi (x)

︸ ︷︷ ︸

=0

≤ f0(x)
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Dual function

g(λ, ν)
∆
= inf

x∈D
L(x , λ, ν)

= inf
x∈D

{

f0(x) +

m∑

i=1

λi fi (x) +

p
∑

i=1

νihi (x)

}

≤ inf
x∈D

f0(x)

= p⋆

• dual function is lower bound on optimal value

• best (largest) lower bound:

d⋆ ∆
= sup

λ�0,ν∈Rp

g(λ, ν)
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Primal and dual problems

primal:

minimize f0(x)
subject to fi (x) ≤ 0, i = 1, . . . ,m

hi (x) = 0, i = 1, . . . , p

dual:

maximize g(λ, ν)
subject to λi ≥ 0, i = 1, . . . ,m

• weak duality: d⋆ ≤ p⋆ always obtains

g(λ, ν) ≤ L(x , λ, ν), for all x ∈ D

≤ L(x⋆, λ, ν)

≤ f0(x
⋆) = p⋆ (then take supremum)

• strong duality: d⋆ = p⋆ holds with a constraint qualification

• Slater’s condition: suppose primal problem is convex, and f1, . . . , fk
are affine, then strong duality holds if there exists an x

fi (x) ≤ 0, i = 1, . . . , k

fi (x) < 0, i = k + 1, . . . ,m

hi (x) = 0, i = 1, . . . , p
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KKT conditions

Let f0, . . . , fm, h1, . . . , hp be differentiable, x⋆ and (λ⋆, ν⋆) be any primal
and dual optimal points, p⋆ = d⋆, then these points necessarily satisfy

1. primal feasibility:

fi (x
⋆) ≤ 0, i = 1, . . . ,m

hi (x
⋆) = 0, i = 1, . . . , p

2. dual feasibility:
λ⋆
i ≥ 0, i = 1, . . . ,m

3. complementary slackness:

λ⋆
i fi (x

⋆) = 0, i = 1, . . . ,m

4. stationarity of Lagrangian:

∇f0(x
⋆) +

m∑

i=1

λ⋆
i ∇fi (x

⋆) +

p
∑

i=1

ν⋆i ∇hi (x
⋆) = 0

11 / 25



KKT results







fi , hi differentiable

x⋆, (λ⋆, ν⋆) primal-dual optimal

p⋆ = d⋆







=⇒ KKT holds







fi , hi differentiable

fi convex, hi affine

x⋆, (λ⋆, ν⋆) satsifies KKT

Slater’s condition holds







=⇒







x⋆, (λ⋆, ν⋆) primal-dual optimal

p⋆ = d⋆

dual optimum attained







for (much) more, see R. T. Rockafellar Convex Analysis
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Valid convex optimization problems

objective.

• minimize { convex function }

• maximize { concave function }

constraints.

• { convex function } ≤ { concave function }

• { concave function } ≥ { convex function }

• { affine function } = { affine function }
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Example: linear program (LP)

The standard form LP is

minimize cT x

subject to Ax = b, x � 0

with variable x ∈ Rn

• Lagrangian:

L(x , λ, ν) = cT x − λT x + νT (Ax − b)

= (ATν + c − λ)T x − νTb

• dual function:

g(λ, ν) = inf
x

{
(ATν + c − λ)T x − νTb

}

=

{

−νTb if ATν + c − λ = 0

−∞ otherwise

• related dual problem:

maximize −νTb
subject to ATν + c � 0
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Example: quadratic program (QP) w/ equality constraints

Consider the quadratic program

minimize xTPx + cT x

subject to Ax = b

with x ∈ Rn a variable, and P = PT � 0

• if b 6∈ range(A), then primal is infeasible

L(x , ν) = xTPx + cT x + νT (Ax − b)

= xTPx + (ATν + c)T x − νTb

• taking a gradients gives necessary conditions for optimality

∇L(x⋆, ν⋆) = (P + PT )x⋆ + (ATν⋆ + c) = 0

• optimal primal and dual variables are solutions (when they exist) to
[
P + PT AT

A 0

] [
x⋆

ν⋆

]

=

[
−c

b

]
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Example: open loop control of a vehicle network

minimize

T∑

k=0

N∑

i=1

‖u(i)(k)‖22 + µ

T∑

k=0

N∑

i,j=1

‖x (i)(k)− x (j)(k)− rij‖
2
2

subject to x (i)(k + 1) = A(i)x (i)(k) + B(i)u(i)(k) + c(i)(k),
i = 1, . . . ,N, k = 0, . . . ,T − 1,

x (i)(0) = z (i), i = 1, . . . ,N
1
N

∑N
i=1 x

(i)(T ) = w

• N vehicles, each with state x (i) ∈ R2 and input u(i) ∈ R

• minimize total fuel

• penalize deviation from prescribed geometry rij ∈ R2

• each vehicle obeys discrete-time affine dynamics

x (i)(k + 1) = A(i)x (i)(k) + B(i)u(i)(k) + c(i)(k)

• initial condition z (i) ∈ R2, final average position w ∈ R2
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Example: geometric program (GP)

posynomial. a function f : Rn → R of the form

f (x1, . . . , xn) =

t∑

k=1

ckx
a1k
1 xa2k2 · · · xankn ,

where cj ≥ 0 and aij ∈ R, e.g., 0.7 + 2x1/x
2
3 + x0.32

monomial. a posynomial with one term (t = 1), e.g., 2.3(x1/x2)
0.5

geometric program. an optimization problem of the form

minimize f0(x)
subject to fi (x) ≤ 1, i = 1, . . . ,m

gi (x) = 1, i = 1, . . . , p
xi > 0, i = 1, . . . , n

where fi are posynomials and gi are monomials
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Exponential form of GP

Standard form GP

minimize f0(x)
subject to fi (x) ≤ 1, i = 1, . . . ,m

gi (x) = 1, i = 1, . . . , p
xi > 0, i = 1, . . . , n

with variable x ∈ Rn

• define new variables yi = log xi and bk = log ck

h(y) = log (f (ey1 , . . . , eyn)) = log

(
t∑

k=1

ea
T
k y+bk

)

, ak =






a1k
...

ank






• equivalent convex formulation in variable y ∈ Rn

minimize log(f0(e
y1 , . . . , eyn))

subject to log(fi (e
y1 , . . . , eyn)) ≤ 0, i = 1, . . . ,m

log(gi (e
y1 , . . . , eyn)) = 0, i = 1, . . . , p
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Example: second order cone program (SOCP)

second order cone. a subset Qn of Rn given by

x0

x1 x2

Qn = {(x0, x1) ∈ R× Rn−1 | ‖x1‖2 ≤ x0}

second order cone program. an optimization problem of the form

minimize f T x

subject to ‖Aix + bi‖2 ≤ cTi x + di , i = 1, . . . ,m

• a point x is feasible if and only if
[
cTi
AT
i

]

x +

[
di
bi

]

∈ Qni (ni = 1 + number of rows of Ai )
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Relaxation and restriction

minimize f (x)
subject to x ∈ C

suppose S ⊆ C ⊆ T , then

inf
x∈T

f (x) ≤ inf
x∈C

f (x) ≤ inf
x∈S

f (x)

• C is original feasible set

• T is relaxation

• S is restriction

common practice if C is not convex
or is too complicated to describe

Rn

C
S

T
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Affine function over convex set

minimize cT x

subject to x ∈ C

C

c

x⋆

• if C is compact and objective is affine, an optimal point exists on the
boundary ∂C of the feasible set

• also works for maximization of a convex objective

• LP: C is a polyhedron, x⋆ can be a vertex

• SDP: C is a slice of Sn
+

main idea behind many practical algorithms (simplex. . . )
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Conic optimization

minimize f0(x)
subject to A(x) = b

x ∈ K

• generalization of LP, SOCP, SDP

• variable is x ∈ Rn

• f0 is convex objective, often affine

• domain is a convex cone K

• affine constraints A : Rn → K
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Epigraph trick

• can arrange for objective to be linear by introducing an extra variable

minimize f (x)
subject to x ∈ C

⇓

minimize γ
subject to f (x) ≤ γ

x ∈ C

• new variable is (x , γ)

• if epi(f ) and C are cone representable, the result is a conic program
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Cone representations: SDP

sets. a convex set C ⊆ Rn is SDP representable if there exists an affine
mapping A : Rn × Rm → Sp such that

x ∈ C ⇐⇒ ∃u ∈ Rm, A(x , u) � 0.

functions. a convex function f : Rn → R is SDP representable if its
epigraph epi(f ) is an SDP representable set.
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Examples: SDP representable functions

• absolute value: f (x) = |x |

|x | ≤ t ⇐⇒

[
x + t 0
0 −x + t

]

� 0

• euclidean norm: f (x) = ‖x‖2

‖x‖2 ≤ t ⇐⇒ t2 − xT x ≥ 0 ⇐⇒

[
t xT

x tI

]

� 0

• largest eigenvalue: f (X ) = λmax(X )

λmax(X ) ≤ t ⇐⇒ tI − X � 0

• sum of k largest eigenvalues: f (X ) = λ1(X ) + · · ·+ λk(X )

f (X ) ≤ t ⇐⇒ ∃Z = ZT and s ∈ R with







t − ks − Tr(Z ) ≥ 0

Z � 0

Z − X + sI � 0






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