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Logistics

• hw2 due this Wed, Apr 15

• do an easy problem or CYOA

• hw1 solutions posted online

• start reading: lmibook, Ch 1–2

• the book is dense, but extremely good
• free online, written in 1994—even more timely now than ever
• less important on a first reading: §2.3–2.4 (algorithms)
• very important: §2.6.3 (S-procedure), §2.7.2–3 (KYP)
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Dynamical systems

A dynamical system concerns quantities that evolve in time, e.g.,

ẋ(t) = f (x(t)), x(0) = x0.

Here x(t) ∈ Rn is a state variable, and f : Rn → Rn is the (infinitesimal)
direction of evolution.

x

f (x)
Rn
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Solutions to ODEs

Often do not want (or care) to compute x(t) directly in closed form

ẋ = f (x), x(0) = x0

• if f (x) = Ax , then x(t) = eAtx0

• fact. if f is Lipschitz in a neighborhood of x0, then the following
algorithm converges to a unique solution (locally)

x (0)(t) := x0

x (k+1)(t) := x0 +

∫ t

0

f (x (k)(τ)) dτ, k = 0, 1, 2, . . .

• time integration methods (Euler, RK, symplectic, . . . )
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Conserved quantities

Let V : Rn → R be a real-valued function on a state space. We say that
V is a conserved quantity if it is constant,

V̇ (x) = ∇V (x)T f (x) = 0,

along trajectories of ẋ = f (x)

• V̇ is a Lie derivative along vector field f

• trajectories stay in level sets of V ,

{z ∈ Rn | V (z) = α}

proof. if V (x(0)) = α, then

V (x(t)) = α+

∫ t

0

V̇ (x(τ))
︸ ︷︷ ︸

=0

dτ = α

for all t ≥ 0
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Sublevel sets

The α-sublevel set of a function V : Rn → R is

Sα = {z ∈ Rn | V (z) ≤ α}

• Sα can be unbounded

• if V is convex, then so is Sα

V (x)

α

Rn

Sα
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Dissipated quantities

Let V : Rn → R be a real-valued function on a state space. We say that
V is a dissipated quantity if it is nonincreasing,

V̇ (x) = ∇V (x)T f (x) ≤ 0,

along trajectories of ẋ = f (x)

• −V̇ is the dissipation rate

• trajectories stay in sublevel sets of V ,

Sα = {z ∈ Rn | V (z) ≤ α}

proof. if V (x(0)) ≤ α, then

V (x(t)) = V (x(0)) +

∫ t

0

V̇ (x(τ))
︸ ︷︷ ︸

≤0

dτ ≤ α

for all t ≥ 0
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Example: spring-mass-dashpot

m
u = 0

k

c

x

mẍ(t) + cẋ(t) + kx(t) = 0 ⇐⇒
[
ẋ1
ẋ2

]

=

[
0 1

− k

m
− c

m

] [
x1
x2

]

• total energy: V (x1, x2) =
1
2kx

2
1 + 1

2mx22

• energy derivative:

V̇ (x1, x2) =

[
kx1
mx2

]T ([
0 1

− k

m
− c

m

] [
x1
x2

])

= −cx22

• V is conserved if c = 0, dissipated if c > 0

8 / 26



Example: capacitor-inductor-resistor

v(t)

L R

C x(t)

+

−

LCẍ(t) + RCẋ(t) + x(t) = v(t)

(compare to)

mẍ(t) + cẋ(t) + kx(t) = u(t)

• large inductors are like heavy masses

• small capacitors are like stiff springs

• resistors dissipate energy
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Positive definite functions

A function V : Rn → R is positive definite if

• V (x) ≥ 0 for all x

• V (x) = 0 if and only if x = 0

• all sublevel sets of V are bounded

example. the function V (x) = xTPx is positive definite ⇐⇒ P ≻ 0.
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Lyapunov stability theorem

Suppose there is a function V : Rn → R such that

• Generalized energy: V is positive definite

• Strict dissipation: V̇ (x) < 0 for all x 6= 0 and V̇ (0) = 0

then every trajectory of ẋ = f (x) converges to zero as t → ∞.

proof. Suppose x(t) 6→ 0. Since V is a dissipated, nonnegative quantity,

V ≥ 0 and V̇ ≤ 0 together mean that V → c1 > 0. In particular,
c1 ≤ V (x(t)) ≤ V (x(0)) = c2 for all t ≥ 0. Take

C = {z ∈ Rn | 0 < c1 ≤ V (z) ≤ c2}.

Since C ⊂ Sc2 is compact and V is strictly dissipated, we have
sup

z∈C
V̇ (z) = −γ < 0. But the energy at time t,

V (x(t)) = V (x(0)) +

∫
t

0

V̇ (x(τ))
︸ ︷︷ ︸

≤−γ

dτ ≤ c2 − γt,

is negative for large t, a contradiction.
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Graphical interpretation

If the sublevel sets of V are bounded and V is

• conserved: ∇V (x)T f (x) = 0 =⇒ x(t) moves along level set

• dissipated: ∇V (x)T f (x) ≤ 0 =⇒ x(t) cannot escape sublevel set

• strictly dissipated: ∇V (x)T f (x) < 0 =⇒ x(t) enters sublevel set

x

∇V (x)

f (x)

V (
x)

<
α

V (
x)

>
α

V (
x)

=
α
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Other Lyapunov-like results

non strict dissipation. if V̇ (x) ≤ 0, then trajectories can hide in the
zero-dissipation set

{z ∈ Rn | V̇ (z) = 0},
but if the only solution to ẋ = f (x), V̇ (x) = 0, is x(t) ≡ 0 for all t, then
x(t) → 0 (LaSalle)

decay rate. if the dissipation rate is −V̇ ≥ 2αV , then trajectories of
ẋ = f (x) decay exponentially with rate at least α (ex. 3),

lim
t→∞

eαt‖x(t)‖2 = 0

region of attraction. define R = {x0 ∈ Rn | limt→∞ x(t) = 0}. if

Sα = {z ∈ Rn | V (z) ≤ α} ⊆ D := {z ∈ Rn | V̇ (z) < 0} ∪ {0},

then Sα ⊆ R, i.e., Sα is an inner approximation of R.
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Central idea

If we can find an energy-like (Lyapunov) function V : Rn → R, that
satisfies certain dissipation conditions, then we can conclude something
about the trajectories of the system, e.g.

• stability

• robustness wrt. parameter perturbations

• decay rate

• input and output energy bounds

• bounds on peak, overshoot

• regions of attraction. . .

Where to get Lyapunov functions:

• physical insight

• Lyapunov function from system linearization

• more sophisticated methods (sum of squares. . . )
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Example: region of attraction

Nonlinear system (Van der Pol oscillator with time reversed)

{

ẋ1 = −x2

ẋ2 = x1 + (x21 − 1)x2

• linearization about equilibrium (0, 0) is stable

[
ẋ1
ẋ2

]

=

[
0 −1
1 −1

]

︸ ︷︷ ︸

A

[
x1
x2

]

, λi = −1

2
±

√
3

2
j

• suggests quadratic Lyapunov function V (z) = zTPz , e.g.,

V (z) =

[
z1
z2

]T [
1.5 −0.5
−0.5 1

]

︸ ︷︷ ︸

P

[
z1
z2

]

, ATP + PA = −I ≺ 0
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Example: region of attraction

V̇ (z) = 2zTPż = 2

[
z1
z2

]T [
1.5 −0.5
−0.5 1

] [
−z2

z1 + (z21 − 1)z2

]

= −(z21 + z22 )− (z31 z2 − 2z21 z
2
2 )

• strict dissipation set (shaded):
D = {z | V̇ (z) < 0} ∪ {0}

• largest ellipsoidal sublevel in D:
Sα = {z | V (z) ≤ 2.25}

• true region of attraction R
enclosed by limit cycle

0 1 2 3-1-2-3

0

-1

-2

-3

1

2

3

R

x1

x2

V̇ (z) > 0

V (z) = 2

V (z) = 5

D
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Engineering example: phase locked loop1

φθi θo
sin(·) K F (s) 1

s−

φ̈+ K
τ2
τ1

cos(φ)φ̇+
K

τ1
sin(φ) = θ̈i , F (s) =

1 + τ2s

τ1s

• K , τ1, τ2 > 0 are design parameters

• in state space x1 = φ, x2 = −φ̇, and with θi = 0







ẋ1 = −x2

ẋ2 =
K

τ1
sin(x1)− K

τ2
τ1

cos(x1)x2

• reverse time Van der Pol with sin(x1) ≈ x1 and cos(x2) ≈ (1− x22/2)

1T-C Wang, S. Lall, T-Y Chiou. Polynomial Method for PLL Controller
Optimization. Sensors 11(7):6575–6592, 2011.
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Summary: estimating the region of attraction

strict dissipation set: D = {z | V̇ (z) < 0} ∪ {0}
bounded energy sublevels: Sα = {z | V (z) ≤ α}
region of attraction: R = {x0 | limt→∞ x(t) = 0}

• Trajectories starting at a point x0 ∈ D with initial energy V (x0) = α
must stay within Sα.

• If Sα contains a point outside D, a trajectory through that point can
gain energy and escape Sα.

• If Sα is entirely within D, no trajectory can escape Sα.

therefore Sα ⊆ D implies Sα ⊆ R.

nonstrict dissipation regions can be used to compute invariant sets
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Invariant ellipsoids

• for quadratic Lyapunov functions V (z) = zTPz , the energy sublevels
are ellipsoids,

Sα = {z ∈ Rn | zTPz ≤ α}
• for (marginally) stable linear state space systems, nonstrict
dissipation sets are all of Rn

D = {z ∈ Rn | V̇ (z) = zT (ATP + PA)z ≤ 0},

hence Sα ⊆ D = Rn

• thus linear state space systems are either globally (marginally)
stable, or not globally (marginally) stable

much more interesting in the study of state–output and input–output
properties of LDIs
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Lyapunov stability theorem for linear systems

For the state space system ẋ = Ax , V (z) = zTPz , and

V̇ (z) = zT (ATP + PA)z = −zTQz ,

if P ≻ 0, Q ≻ 0, then x(t) → 0.

• converse. if ẋ = Ax is stable, then there exists P ≻ 0 and Q ≻ 0 to
prove it. (Lyapunov is exact for linear systems.)

• typically fix Q = QT ≻ 0 and solve Lyapunov equation

ATP + PA+ Q = 0

• solution given by the Gramian

P =

∫ ∞

0

eA
T τQeAτ dτ
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Lyapunov equation

The Lyapunov equation ATP + PA+ Q = 0 really is a set of linear
equations, e.g., for n = 2

[
a11 a12
a21 a22

]T [
p1 p2
p2 p3

]

+

[
p1 p2
p2 p3

] [
a11 a12
a21 a22

]

= −
[
q1 q2
q2 q3

]

can be rewritten as




2a11 2a21 0
a12 a11 + a22 a21
0 2a12 2a22









p1
p2
p3



 =





−q1
−q2
−q3





in matlab: P = lyap(A’,Q); % note the transpose!
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Observability

useful fact. (PBH test) The pair (A,C ) is observable if and only if there
exists no x 6= 0 such that

Ax = λx , Cx = 0.

• if such x 6= 0 exists, then

Cx = 0

CAx = λCx = 0

CA2x = CAx = 0

. . .

=⇒ rankO = rank








C

CA
...

CAn−1







6= n

• in Kalman canonical form (A11,C1) is observable subspace

[
A B

C 0

]

∼





A11 0 B1

A21 A22 B2

C1 0 0





a nonzero vector (0, x2) with A22x2 = λx2 is unobservable
• the function-valued operator Φ : x0 7→ CeAtx0 has ker(Φ) = null(O)
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Lyapunov theorem with observability

For the state space system ẋ = Ax , V (z) = zTPz , and

V̇ (z) = zT (ATP + PA)z = −zTQz ,

if P ≻ 0, Q � 0, and (A,Q) is observable, then x(t) → 0.

proof idea. use LaSalle to rule out hidden unstable trajectories

• solution is x(t) = eAtx0

• (A,Q) observable ⇐⇒ (A,Q1/2) observable

• if a solution of ẋ = Ax is in zero dissipation set V̇ (z) = 0, then

−(eAtx0)
TQ(eAtx0) = −‖Q1/2eAtx0‖2 = 0 for all t ≥ 0

• from PBH this means x0 = 0, hence x(t) ≡ 0
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Observability zoo

For the Lyapunov equation ATP + PA = −Q

P ≻ 0 P � 0

Q ≻ 0 asy. stable impossible

Q � 0 bounded may have unstable subspaces

Q � 0 and (A,Q) obs. asy. stable impossible
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Dual Lyapunov equation

We have the following LMI equivalence

P ≻ 0, ATP + PA ≺ 0

if and only if

Q ≻ 0, QAT + AQ ≺ 0

for Q = P−1.

proof. multiply both sides on the left and right by Q = P−1

extremely useful trick in static controller synthesis
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Homegeneity

fact. there exists P ≻ 0, ATP + PA ≺ 0 if and only if there exists P̃ ,

P̃ � I , AT P̃ + P̃A ≺ 0

• in practice, we cannot enforce P ≻ 0 on the computer

• we have for small ǫ > 0,

P � ǫI , ATP + PA ≺ 0

• change variables to P̃ = P/ǫ

P̃ � I , AT P̃ + P̃A ≺ 0

• have to be very careful with rank deficiencies in control SDPs
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