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Logistics

e hw?2 due this Wed, Apr 15
e do an easy problem or CYOA

e hwl solutions posted online
e start reading: Imibook, Ch 1-2

the book is dense, but extremely good

free online, written in 1994—even more timely now than ever
less important on a first reading: §2.3-2.4 (algorithms)

e very important: §2.6.3 (S-procedure), §2.7.2-3 (KYP)
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Dynamical systems
A dynamical system concerns quantities that evolve in time, e.g.,
x(t) = f(x(t)), x(0)= xo.

Here x(t) € R" is a state variable, and f : R” — R" is the (infinitesimal)
direction of evolution.

RY (x)
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Solutions to ODEs

Often do not want (or care) to compute x(t) directly in closed form

x=f(x), x(0)=xo

o if f(x) = Ax, then x(t) = e’txg
e fact. if f is Lipschitz in a neighborhood of xg, then the following
algorithm converges to a unique solution (locally)

xO(t) == xo

t
x(2) = x + / Fx®(r)dr, k=012,
0

e time integration methods (Euler, RK, symplectic, . ..)
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Conserved quantities

Let V : R” — R be a real-valued function on a state space. We say that
V is a conserved quantity if it is constant,

V(x) = VV(X)Tf(X) =0,

along trajectories of x = f(x)

e Vis a Lie derivative along vector field

e trajectories stay in level sets of V,
{zeR" | V(z) =a}
proof. if V(x(0)) = «, then

V(x(t) =« —|—/O V(x(7)) dT = «

forall t >0
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Sublevel sets

The a-sublevel set of a function V: R" — R is

Se={z€R"|V(z) < a}

e S, can be unbounded

e if V is convex, then so is S,
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Dissipated quantities

Let V : R” — R be a real-valued function on a state space. We say that
V is a dissipated quantity if it is nonincreasing,

V(x) =VV(x)Tf(x) <0,

along trajectories of x = f(x)

o —V is the dissipation rate

e trajectories stay in sublevel sets of V/,
Sae={z€eR"| V(z) <a}
proof. if V(x(0)) < «, then
t .
V(x(t)) = V(x(0)) —|—/ V(x(7)) dr <«
0 Y——
<0
forall t >0
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Example: spring-mass-dashpot

LSy u=0
m —>
C
J

mi(t) + cx(t) + kx(t) =0 = Kj:[o 1;;;} H

o total energy: V(xi, %) = hx? + 2mx3

e energy derivative:

=[] (% ][

e V is conserved if ¢ = 0, dissipated if ¢ > 0
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Example: capacitor-inductor-resistor

LCx(t) + RCx(t) + x(t) = v(t)
(compare to)

mx(t) + cx(t) + kx(t) = u(t)

e large inductors are like heavy masses
e small capacitors are like stiff springs
e resistors dissipate energy
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Positive definite functions

A function V : R"” — R is positive definite if
e V(x) >0 for all x
o V(x)=0ifand only if x=10
o all sublevel sets of V' are bounded

example. the function V(x) = x” Px is positive definite <= P = 0.
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Lyapunov stability theorem

Suppose there is a function V : R” — R such that
o Generalized energy: V is positive definite
e Strict dissipation: V(x) < 0 for all x # 0 and V(0) =0

then every trajectory of x = f(x) converges to zero as t — 0.
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Lyapunov stability theorem

Suppose there is a function V : R” — R such that
o Generalized energy: V is positive definite
e Strict dissipation: V(x) < 0 for all x # 0 and V(0) =0

then every trajectory of x = f(x) converges to zero as t — 0.

proof. Suppose x(t) /4 0. Since V is a dissipated, nonnegative quantity,

V >0 and % < 0 together mean that V — ¢ > 0. In particular,
a < V(x(t)) < V(x(0)) = ¢ for all t > 0. Take

C={zeR"|0<a<V(z) <}

Since ccC Sc, is compact and V is strictly dissipated, we have
sup,cc V(z) = —y < 0. But the energy at time t,

VIX(®) = VxO) + [ V() dr <ot

is negative for large t, a contradiction.
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Graphical interpretation

If the sublevel sets of V are bounded and V is
e conserved: VV(x)Tf(x) =0 = x(t) moves along level set
o dissipated: VV/(x)7f(x) <0 = x(t) cannot escape sublevel set
o strictly dissipated: VV/(x)Tf(x) < 0 = x(t) enters sublevel set
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Other Lyapunov-like results

non strict dissipation. if V/(x) < 0, then trajectories can hide in the
zero-dissipation set .
{zeR"| V(z) =0},

but if the only solution to x = f(x), V(x) =0, is x(t) = 0 for all t, then
x(t) — 0 (LaSalle)

decay rate. if the dissipation rate is —V >2aV, then trajectories of
x = f(x) decay exponentially with rate at least o (ex. 3),

H at _
lim e7tx()]2 = 0

region of attraction. define R = {xg € R" | lim;_, o x(t) = 0}. if
Se={zeR"|V(z)<a} CD:={zeR"|V(z) <0} U{0},
then S, C R, i.e.,, S, is an inner approximation of R.
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Central idea

If we can find an energy-like (Lyapunov) function V : R” — R, that
satisfies certain dissipation conditions, then we can conclude something

about the trajectories of the system, e.g.

stability

robustness wrt. parameter perturbations
decay rate

input and output energy bounds

bounds on peak, overshoot

regions of attraction. ..

Where to get Lyapunov functions:

physical insight

Lyapunov function from system linearization

more sophisticated methods (sum of squares. . .
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Example: region of attraction
Nonlinear system (Van der Pol oscillator with time reversed)
X1 = —X2
X0 = X1 + (X12 — 1)X2
e linearization about equilibrium (0,0) is stable
>:<1 :0 -1 Xl, )\;:—EZE@J.
X2 1 -1 X2 2 2
——
A

e suggests quadratic Lyapunov function V(z) = z" Pz, e.g.,

T
|14 1.5 —-0.5 4] T _
- [2] [, 0[] aeeeae <o
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Example: region of attraction

1.5 —-0.5 —22
-0.5 1 71+ (22— 1)z

=—(#+3) - (42 -247)

-
V(z) =2z"Pz=2 {Zl}
2

e strict dissipation set (shaded):
D={z|V(z) <0}u{o0}

e largest ellipsoidal sublevel in D:
So ={z| V(z) <225}

e true region of attraction R
enclosed by limit cycle
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Engineering example: phase locked loop!

0; 10}

sin(+) K F(s)

©n =

. 1+ 7s

R K
o+ K?l cos(¢)¢ + T sin(¢) = 0i, - F(s) 1S

o K,71, 7 > 0 are design parameters

e in state space x; = ¢, X, = —¢, and with 6; = 0

X| = —Xo

K
).(2 = — sin(xl) — KB COS(X1)X2
1 T1

e reverse time Van der Pol with sin(x;) &~ x; and cos(x) ~ (1 — x2/2)

IT-C Wang, S. Lall, T-Y Chiou. Polynomial Method for PLL Controller
Optimization. Sensors 11(7):6575-6592, 2011.
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Summary: estimating the region of attraction

strict dissipation set: D = {z | V(z) < 0} U {0}
bounded energy sublevels: S, = {z| V(z) < a}
region of attraction: R = {xo | lim¢— 0o x(t) = 0}

o Trajectories starting at a point xo € D with initial energy V(x) = «
must stay within S,

e If S, contains a point outside D, a trajectory through that point can
gain energy and escape S,.

o If S, is entirely within D, no trajectory can escape S,.

therefore S, C D implies S, C R.

nonstrict dissipation regions can be used to compute invariant sets
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Invariant ellipsoids

e for quadratic Lyapunov functions V(z) = z” Pz, the energy sublevels
are ellipsoids,
Se={z€R"|zTPz< a}

e for (marginally) stable linear state space systems, nonstrict
dissipation sets are all of R”

D={zeR"|V(z) =z (AP + PA)z < 0},

hence S, C D =R"

e thus linear state space systems are either globally (marginally)
stable, or not globally (marginally) stable

much more interesting in the study of state—output and input—output
properties of LDlIs
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Lyapunov stability theorem for linear systems
For the state space system x = Ax, V(z) = z" Pz, and
V(z)=z"(ATP+ PA)z = —27 Qz,

if P>=0, Q =0, then x(t) — 0.

e converse. if x = Ax is stable, then there exists P = 0 and Q@ >~ 0 to
prove it. (Lyapunov is exact for linear systems.)

e typically fix @ = Q" = 0 and solve Lyapunov equation
ATP+PA+ Q=0

e solution given by the Gramian

o0 T
P:/ e QN dr
0
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Lyapunov equation

The Lyapunov equation ATP + PA+ Q = 0 really is a set of linear

equations, e.g., for n =2

- T
a1 a2 p1 P2 I p1
a1 ax| |p2 P3 p2

can be rewritten as

_2311 2321

a2 ail +ax
L 0 2312

in matlab: P

lyap(A’,Q);

P2_
P3|

0
ani

2322

|

01
a2

ai

a2
azi as

a|
a

P1 —q1
p2| = | —q2
P3 —qs3

% note the transpose!
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Observability

useful fact. (PBH test) The pair (A, C) is observable if and only if there
exists no x # 0 such that

Ax = Xx, Cx=0.

e if such x # 0 exists, then

Cx=0 C
CAx=AXCx=0 CA
) —> rank O = rank . #n
CA°x=CAx =0 :
CAn—l

e in Kalman canonical form (Ay1, i) is observable subspace

a nonzero vector (0, x) with Axx, = Axp is unobservable
o the function-valued operator ® : xg — Ce”xg has ker(®) = null(O)
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Lyapunov theorem with observability
For the state space system x = Ax, V(z) = z" Pz, and
V(z)=z"(ATP+ PA)z = —27 Qz,

if P>~0, Q >0, and (A, Q) is observable, then x(t) — 0.

proof idea. use LaSalle to rule out hidden unstable trajectories
e solution is x(t) = e*xg
e (A, Q) observable <= (A, Q'/?) observable
e if a solution of x = Ax is in zero dissipation set V/(z) = 0, then

—(e™x0) T Q(e™x0) = — || QY%A xplla = 0 forall t >0

e from PBH this means xo = 0, hence x(t) =0
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Observability zoo

For the Lyapunov equation ATP + PA= —Q

P =0 P >0

Q@ = 0 | asy. stable impossible
QR*>=0 bounded may have unstable subspaces

Q@ > 0 and (A, Q) obs. | asy. stable impossible
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Dual Lyapunov equation
We have the following LMI equivalence
P~0, ATP+PA<0

if and only if

Q-0, QAT +AQR <0
for @ = P71,

proof. multiply both sides on the left and right by @ = P!

extremely useful trick in static controller synthesis
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Homegeneity
fact. there exists P = 0, AT P + PA < 0 if and only if there exists P,

P-1, ATP+PA<0

e in practice, we cannot enforce P > 0 on the computer

we have for small € > 0,
P=el, ATP+PA<0
e change variables to P = P/e

P=1, ATP+PA<0

have to be very careful with rank deficiencies in control SDPs
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