Lecture 2. Linear Systems
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April 6, 2015
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Logistics

hwl due this Wed, Apr 8
hw due every Wed

e in class, or
e my mailbox on 3rd floor of Annenberg

reading: BV Appendix A, pay attention to

e linear algebra, notation
e Schur complements (also in hwl)
° > vs -

hw2-+ will be “choose your own adventure”:

do an assigned problem
or

pick and do a problem from the catalog
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Autonomous systems
Consider the autonomous linear dynamical system

x(t) = Ax(t), x(0) = xg

e solution is matrix exponential
x(t) = e**x(0),
where

1 1
eAtél+At+§A2t2+§A3t3+-~

= sinh(At) + cosh(At)
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Formal derivation from discrete time

Original continuous equation approximated by forward Euler for small
timestep 0 < 1

Xk+1 — Xk

5 ~ Axk, xk =x(kd), k=0,1,2,...

Classic pattern for discrete time systems:

xo = x(0) = xo
X1 = xg + Ad xg
Xy = (I + A§)2X0

xk = (I + Ad)kxo

X(t) = 5ll>n(;+(l + A(S)Lt/(;JXO = eAtxo
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State propagation
propagator. Multiplying by e”* propagates the autonomous state
forward by time t. For v,w € R",
w = ey implies v =e"w.
e the point w is v propagated by time t
e equivalently: the point v is w propagated by time —t
e current state contains all information

e matrix exponential is a time propagator (huge deal in physics, e.g.,
Hamiltonians in quantum mechanics)

Markov property. future is independent of past given present
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State propagation: forward




State propagation: backward
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Example: output prediction from threshold alarms
An autonomous dynamical system evolves according to
x(t) = Ax(t), y(t) = Cx(t), x(0)= xo,

where
e Ac R™" and C € R1" are known, n =6

e xp € R" is not known

x(t) and y(t) are not directly measurable

we have threshold information,

y(t)>1, te[l.12,1.85]U [4.47,4.87],
y(t) < -1, t€[0.22,1.00] U [3.38,3.96].

question: x(10) =77 (and is it unique?)
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Example: output prediction from threshold alarms

Autonomous system trace

2+

STAVAT S

2k
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Example: output prediction from threshold alarms
method 1. determine xg, then propagate forward by 10s:

1= Ce’ixg, t;=1.12,1.85,4.47,4.87
—1= Ce’ixy, t; =0.22,1.00,3.38,3.96

8 eqns, 6 unknowns =  x(10) = e*0x

method 2. determine x(10) directly:

1= Ce 07t (10), t; =1.12,1.85,4.47,4.87
—1 = CeA(10-t)x(10), t = 0.22,1.00,3.38,3.96

8 eqns, 6 unknowns
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State propagation with inputs
For continuous time input-output system

x(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)
x(0) = xo,

if u(-) £ 0, then the state propagator is a convolution operation,

to+t
x(to + t) = e™x(tp) +/ A+t =) By (1) dr

to

interpreted elementwise.

11 /31



Impulse response

suppose the input is an impulse u(t) = §(t)

t
y(t) = Ce™xp + Ce**=7) Bu(r) dr + Du(t)
-

t
= CeMxo+ [ CAUTTBH(r) dT + Di(t)
o
= Ce'xp + Ce™B 4 Di(t)

e Cefxg is due to initial condition
o h(t) = Ce**B + D§(t) is the impulse response
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Linearity

Ul(t) e

Ug(t) e

au(t) + Bua(t) —»

linear system

—» y1(t)

linear system

—» (1)

linear system

— ayi(t) + By2(t)
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Time invariance

u(t) —»

u(t— Td) E—

Tl system

- y(t)

Tl system

—— y(t — 7d)
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Linear + Time Invariant (LTI) systems

fact. (AM §5.3) if a system is LTI, its output is a convolution

y(t) = /00 h(t — 1)u(r)dt

— 00

e u(t): input
e y(t): output
e h(t): impulse response fully characterizes system for any input

oo

Y () = (h+ u)(t) = / h(t — 7)u(r) dr

— 00

= /w h(r)u(t —7) dr

— 00
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Graphical interpretation

h(t)
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I" 11:‘\\\

t

y(t) :/; h(t —T)u(T) dT

16 / 31



Singular value decomposition

fact. every m x n matrix A can be factored as
r
A=UsVT = o]
i=1

where r = rank(A), U € R™", UTU =1, Ve R™" VTV =],
Y = diag(o1,...,0/), and

o220, 20

e u; € R™ are the left singular vectors
e v; € R" are the right singular vectors

e g; > 0 are the singular values
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Singular value decomposition

The “thin” decomposition

| [ =

A= |u - u

\ | o | |—vT—

can be extended to a “thick” decomposition by completing the basis for
R™ and R" and making U, V square.

e {uy,...,u} is an orthonormal basis for range(A)

e {V,11,...,Vn} is an orthonormal basis for null(A)
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Controllability: testing for membership in span
Given a desired y € R™, we have

y € range(A) <= rank [A y| =rank(A)
<~ yespan{u,...,u}.

r
The component of y in range(A) is Z uiuly.
i=1

y €range(A) — y-— Zu;u,-Ty =0
i=1

— (I-UUNy=0
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Linear mappings and ellipsoids

An m x n matrix A maps the unit ball in R” to an ellipsoid in R™,

B={xeR":|x|| <1} — AB = {Ax:x € B}.

e an ellipsoid induced by a matrix P € ST is the set
Ep={xeR™: x"P1x <1}
e ), v;: eigenvalues and eigenvectors of P

Rm

\/TlVl

A

20 /31



SVD Mapping

The SVD is a decomposition of the linear mapping x — Ax, such that

right singular vectors v; map to left singular vectors o;u;

A=UX

r

vl = E :U,-u;v,-T

i=1

r = rank(A)

e equivalent “eigenvalue problem” is Av; = o;u;

A

R" R™
%1 Vo Golls /W
\‘/ o1l

X — Ax
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Pseudoinverse

For A= UXVT € R™" full rank, the pseudoinverse is

Al = vZ-tyT
= lim(ATA+ ul)PAT = (ATA) AT, m>n
n—0
= IimOAT(AAT +ul)t=AT(AAT)"Y, m<n
B>

e least norm (control): if A is fat and full rank,

* . 2 T
m =A
X argxeR",Tx:y ||XH2 y

e least squares (estimation): if A is skinny and full rank,

x* = arg min ||Ax — y|3 = Ay
x€R"
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Discrete convolution

Discrete linear system with impulse coefficients hg, ..., h,_1,

k
yk:th_,-u,-, k:O,...,n—l
i=0

or written as a matrix equation,

Yo ho 0 0 up
i hl hO 0 uy
Yn—1 ho—1 hn—2 -+ ho| [Un—1

23 /31



Discrete convolution

Matrix structure gives rise to familiar system properties:

Yo ho 0 s 0 ug
n h hp -+ 0 uy
Yn—1 hn—1 hp— ho| [un—1
—_——
y A u

e A is a matrix: system is linear
e A lower triangular: system is causal

o A Toeplitz: system is time-invariant

open problem. how do you spell Otto Toeplitz's name?
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Typical filter

Causal finite 2N + 1 point truncation of ideal low pass filter

QC Cy- .
hi = = sinc (Q(I—N)> i=0,...,2N

s s

Filter coefficients: Q. = w/4, N =40
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SVD of filter matrix

U

Singular values of A

°
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Closely related: circulant matrices

A circulant matrix is a “folded over" Toeplitz matrix

Co &] Q0 Cpl
Ch—1 Co G - Cp2
C=|ch2 -1 - Cp-3
&] 2 G Co
e eigenvalues are the DFT of the sequence {co,...,ch-1}
1
—2mjk/n

n—1
L 1 €
)\(k) — Cief27rjkl/n V(k) _
2 ’ NG :
i=0 y
e—27rjk(n—1)/n

e for more, see R. M. Gray "“Toeplitz and Circulant Matrices”
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Equalizer design

causal deconvolution problem. pick filter coefficients g such that g = h
is as close as possible to the identity

Up 80 0 s 0 ho 0 e 0 [7)
uy 81 g& - 0 h ho -+ 0 uy
Un—1 g1 &n—2 - 8| |Ph-1 ha2 -+ ho| |Un—1

e G* = AT minimizes ||GA — I||% over all G € R"™*"

e often want G causal, i.e., lower triangular Toeplitz (ltt.)

minimize  ||GA—I||%
subject to G is Itt.

o for more, see Wiener—Hopf filter
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Markov parameters
Consider the discrete-time LTI system

X1 = Axx + Buy

Yk = Cxk
x(0) = xo.
For each Kk =0,1,2,..., we have
Yo 0 Up C
" CB 0 U CA
Y2 | — CAB CB 0 up + CA2 X0-

Vi CA"1B CA*2B CA*3B ... 0| |u CAk
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Minimum energy control

Given matrices A, B, C, and initial condition xp, find a minimum energy

input sequence ug, ..., U, that achieves desired outputs yfles, . ,yﬂfs at
times ki, ..., ky.
yles CAk—1B CAk—2B 0] [uo CAk
Yis CA~1B (CAk—2B 0| (g CAk
. = . . . + . X0-
y,ffs CAk=1B  CAk=2B ... 0| |uk CAke
—— ~—— =
y H u G

o if y — Gxp € range(H), a minimizing sequence is
u= H(y — Gxp).

o [eft singular vectors of H with large o; are modes with lots of
actuator authority
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Least squares estimation

Given matrices A, C, (B = 0) and measured (noisy) outputs

Vi, e at times ki, ..., kg, find the best least squares estimate
of the initial condition xg.
y;{'rl'neas CAk1
y,r:;eas CAkz -
. = . Xp + noise
y,r(rzeas CAk['
—_—
y G

e the least squares estimate is
xo = Gty

e right singular vectors of G with large o; are modes with lots of
sensitivity
e null(G) is unobservable space
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