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Logistics

history.

• this is a new course taught at Caltech CDS for the first time

• one of a kind, unorthodox, groundbreaking, innovative, historic, our
best idea yet

• there may be bugs (in homeworks, lectures, backhanded
compliments)

bug report policy. please do!
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Logistics

lectures.

• frequency: 3.3× 10−6Hz (2× 55min each week)

• mostly by: Ivan Papusha

• time: please fill out online survey by Tue, Apr 1

• first “real” lecture: next week after we determine a time

• place: please check back at the website

• website:

http://www.cds.caltech.edu/~ipapusha/cds270/

homework policy. please do!
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Homeworks

• weekly readings

• weekly homeworks with 1-2 problems

• grading: X− / X / X+

• breakdown: 50% homework / 50% participation

• hw1 is assigned and is due next week

• hw2+ will be “choose your own adventure”:

do an assigned problem

or

pick and do a problem from a catalog

• catalog updated frequently
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Themes

• Dynamical Systems

• Lyapunov theory

• Convex optimization

• Linear Matrix Inequalities
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Dynamical systems

We generally think of dynamical systems as initial value problems or
ordinary differential equations on a state space,

ẋ(t) = f (x(t)), t ≥ 0

x(0) = x0

• x(t) ∈ Rn, for all times t ≥ 0, where Rn is the state space

• x0 ∈ Rn is the initial condition
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Linear dynamical systems

This class will amost exclusively focus on linear and time invariant

dynamical systems

ẋ(t) = Ax(t), t ≥ 0

x(0) = x0

• dynamics determined by matrix A ∈ Rn×n, and the initial condition
x0 ∈ Rn

• solution given by the matrix exponential

x(t) = eAtx0,

where

eM = I +M +
1

2!
M2 + · · ·
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Adding a control variable

fact. many LTI systems can be written in (A,B ,C ,D) form











ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)

x(0) = x0

• input: u(t) ∈ Rm

• output: y(t) ∈ Rp

• state: x(t) ∈ Rn

• assuming u(t) is causal with u(t) = 0 for t < 0, the convolution
equation for output is

y(t) = CeAtx0 +

∫ t

0−
CeA(t−τ)Bu(τ) dτ + Du(t)

8 / 14



Lyapunov theory

example result. The autonomous system

ẋ(t) = Ax(t), x(t) ∈ Rn,

is asymptotically stable if and only if

• all eigenvalues of A ∈ Rn×n have negative real part

• there exists a quadratic Lyapunov function

V (x) = xTPx , P = PT ≻ 0,

V̇ (x) = xT (ATP + PA)x < 0 for all x 6= 0

• the system of linear matrix inequalities

P ≻ 0, ATP + PA ≺ 0

is feasible for some P = PT ∈ Rn×n
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Robust stability

Consider the uncertain system (not LTI)

ẋ(t) ∈ Ωx(t), x(t) ∈ Rn,

where Ω is a subset of Rn×n

• this is a differential inclusion (cf. differential equation)

• example sets

Ω = {A},

Ω = {A1,A2, . . . ,AL},

Ω = {A+ B∆C | λmax(∆
T∆) ≤ 1}
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Polytopic LDI

The linear differential inclusion

ẋ(t) ∈ Ωx(t), Ω = conv{A1,A2, . . . ,AL}

has all trajectories converge to zero as t → ∞ if there exists a joint
Lyapunov function V (x) = xTPx ,

P ≻ 0, AT
i P + PAi ≺ 0, i = 1, . . . , L

• a system of linear matrix inequalities in P = PT ∈ Rn×n

• no closed form solution

• algorithms based on linear algebra and convex optimization can
be used to find P
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Convex optimization

Many problems in control and dynamical systems reduce to an
optimization problem

minimize f0(x)
subject to x ∈ C

over the variable x ∈ Rn

• the problem is convex if f0 : R
n → R is a convex function and C is a

convex set.

• optimal value x⋆ satisfies f0(x
⋆) ≤ f (x) for all x ∈ C

• feasibility problem if f0(x) = 0

• convex optimization is a rich field of study with computational teeth
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Application: circuit sizing

design variables: W1/L1, . . . ,W5/L5
VDD

+Vout −Vout

−Vin+Vin

IDP
RL BRSBRL A RSA

M1A M1B

M2A M2BM3A M3B

M4A M4B

M5A M5B

Rtail

a

b c

d e

f g

I5

VSS = 0V

sa sb

minimize quiescent power
subject to M1, . . . ,M5 in saturation

CMRR ≥ 80dB
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Linear matrix inequalities

For linear dynamical systems, many specifications and robust
analysis/synthesis can be expressed as a semidefinite program (SDP)

minimize cT x

subject to F0 + x1F1 + · · · xnFn � 0

with variable x ∈ Rn and parameters c ∈ Rn, Fi = FT
i ∈ Rn×n

• for a symmetric matrix M = MT ∈ Rn×n,

M � 0 means xTMx ≥ 0 for all x ∈ Rn

• challenge is to write down the SDP

• in theory: if we can write a problem as an SDP, it can be solved by
an algorithm

• in practice: these days, only if Fi are 50× 50 or so
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