Lecture 1. Introduction

Ivan Papusha

CDS270-2: Mathematical Methods in Control and System Engineering

March 30, 2015

Logistics

history.

- this is a new course taught at Caltech CDS for the first time
- one of a kind, unorthodox, groundbreaking, innovative, historic, our best idea yet
- there may be bugs (in homeworks, lectures, backhanded compliments)

bug report policy. please do!

Logistics

lectures.

- frequency: 3.3×10^{-6} Hz (2 × 55min each week)
- mostly by: Ivan Papusha
- time: please fill out online survey by Tue, Apr 1
- first "real" lecture: next week after we determine a time
- place: please check back at the website
- website:

```
http://www.cds.caltech.edu/~ipapusha/cds270/
```

homework policy. please do!

Homeworks

- weekly readings
- weekly homeworks with 1-2 problems
- grading: $\checkmark / \checkmark / \checkmark +$
- breakdown: 50% homework / 50% participation
- hw1 is assigned and is due next week
- hw2+ will be "choose your own adventure":

do an assigned problem

or

pick and do a problem from a catalog

• catalog updated frequently

Themes

- Dynamical Systems
- Lyapunov theory
- Convex optimization
- Linear Matrix Inequalities

Dynamical systems

We generally think of dynamical systems as *initial value problems* or *ordinary differential equations* on a *state space*,

$$\dot{x}(t) = f(x(t)), \quad t \ge 0$$

 $x(0) = x_0$

- $x(t) \in \mathbf{R}^n$, for all times $t \ge 0$, where \mathbf{R}^n is the state space
- $x_0 \in \mathbf{R}^n$ is the initial condition

Linear dynamical systems

This class will amost exclusively focus on *linear* and *time invariant* dynamical systems

$$\dot{x}(t) = Ax(t), \quad t \ge 0$$

 $x(0) = x_0$

- dynamics determined by matrix $A \in \mathbf{R}^{n \times n}$, and the initial condition $x_0 \in \mathbf{R}^n$
- solution given by the matrix exponential

$$x(t)=e^{At}x_0,$$

where

$$e^M = I + M + \frac{1}{2!}M^2 + \cdots$$

Adding a control variable

fact. many LTI systems can be written in (A, B, C, D) form

$$\begin{cases} \dot{x}(t) = Ax(t) + Bu(t) \\ y(t) = Cx(t) + Du(t) \\ x(0) = x_0 \end{cases}$$

- input: $u(t) \in \mathbf{R}^m$
- output: $y(t) \in \mathbf{R}^p$
- state: $x(t) \in \mathbf{R}^n$
- assuming u(t) is causal with u(t) = 0 for t < 0, the convolution equation for output is

$$y(t) = Ce^{At}x_0 + \int_{0^-}^t Ce^{A(t-\tau)}Bu(\tau) d\tau + Du(t)$$

Lyapunov theory

example result. The autonomous system

$$\dot{x}(t) = Ax(t), \quad x(t) \in \mathbf{R}^n,$$

is asymptotically stable if and only if

- all eigenvalues of $A \in \mathbf{R}^{n \times n}$ have negative real part
- there exists a quadratic Lyapunov function

$$V(x) = x^T P x, \quad P = P^T \succ 0,$$

$$\dot{V}(x) = x^T (A^T P + P A) x < 0 \quad \text{for all } x \neq 0$$

• the system of linear matrix inequalities

$$P \succ 0$$
, $A^T P + PA \prec 0$

is feasible for some $P = P^T \in \mathbf{R}^{n \times n}$

Robust stability

Consider the uncertain system (not LTI)

```
\dot{x}(t)\in\Omega x(t),\quad x(t)\in \mathbf{R}^{n},
```

where Ω is a subset of $\mathbf{R}^{n \times n}$

- this is a *differential inclusion* (cf. differential equation)
- example sets

$$\begin{split} \Omega &= \{A\},\\ \Omega &= \{A_1, A_2, \dots, A_L\},\\ \Omega &= \{A + B\Delta C \mid \lambda_{\max}(\Delta^T \Delta) \leq 1\} \end{split}$$

Polytopic LDI

The linear differential inclusion

$$\dot{x}(t) \in \Omega x(t), \quad \Omega = \operatorname{conv}\{A_1, A_2, \dots, A_L\}$$

has all trajectories converge to zero as $t \to \infty$ if there exists a joint Lyapunov function $V(x) = x^T P x$,

$$P \succ 0, \quad A_i^T P + P A_i \prec 0, \quad i = 1, \dots, L$$

- a system of linear matrix inequalities in $P = P^T \in \mathbf{R}^{n \times n}$
- no closed form solution
- algorithms based on **linear algebra** and **convex optimization** can be used to find *P*

Convex optimization

Many problems in control and dynamical systems reduce to an *optimization* problem

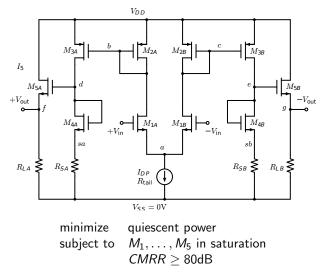
 $\begin{array}{ll} \text{minimize} & f_0(x) \\ \text{subject to} & x \in \mathcal{C} \end{array}$

over the variable $x \in \mathbf{R}^n$

- the problem is convex if $f_0 : \mathbf{R}^n \to \mathbf{R}$ is a *convex function* and \mathcal{C} is a *convex set*.
- optimal value x^* satisfies $f_0(x^*) \leq f(x)$ for all $x \in C$
- feasibility problem if $f_0(x) = 0$
- convex optimization is a rich field of study with computational teeth

Application: circuit sizing

design variables: $W_1/L_1, \ldots, W_5/L_5$



Linear matrix inequalities

For linear dynamical systems, many specifications and robust analysis/synthesis can be expressed as a *semidefinite program* (SDP)

minimize
$$c^T x$$

subject to $F_0 + x_1 F_1 + \cdots x_n F_n \succeq 0$

with variable $x \in \mathbf{R}^n$ and parameters $c \in \mathbf{R}^n$, $F_i = F_i^T \in \mathbf{R}^{n \times n}$

• for a symmetric matrix $M = M^T \in \mathbf{R}^{n \times n}$,

$$M \succeq 0$$
 means $x^T M x \ge 0$ for all $x \in \mathbf{R}^n$

- · challenge is to write down the SDP
- in theory: if we can write a problem as an SDP, it can be solved by an algorithm
- in practice: these days, only if F_i are 50 \times 50 or so