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Abstract— Classical schemes in system identification and
adaptive control often rely on persistence of excitation to
guarantee parameter convergence, which may be difficult to
achieve with a single agent and a single input. Inspired by
consensus systems, we extend classical parameter adaptation to
the multi agent setting by combining an adaptive gradient law
with consensus dynamics. The gradient law represents the main
learning signal, while consensus dynamics attract each agent’s
parameter estimates toward those of its neighbors. We show
that the resulting decentralized online parameter estimator can
be used to identify the true parameters of all agents, even if no
single agent employs a persistently exciting input.

I. I NTRODUCTION

We envision collaborative system identification applica-
tions where identical intelligent agents can communicate
with each other, and are tasked with reaching consensus on
some set of common parameters. While we are motivated
by the case where these parameters specify the continuous
dynamics for a nominal model class, of which every agent in
the system is an instance, our information sharing framework
readily applies to more general collaborative filtering and
estimation schemes. For example, the parameters can refer
to a static (or slowly changing) global state that each agent
in the network can only partially observe. Either way, the
parameters are determined in a decentralized, adaptive way
through an online scheme that integrates local measurements
with communicated information.

Classical (single agent) system identification algorithms
determine model parameters by probing the system with an
a priori selected input and observing the output. If the input
is “exciting” enough to stimulate all the relevant internal
dynamical modes, the model parameters can be backed out
by adaptation. Otherwise, most algorithms can only ascertain
the parameters to the extent that they replicate the observed
input-output relationship. Designing an input that guarantees
parameter convergence is difficult, because the persistence of
excitation (PE) conditions that must be checked often require
solving for the full system trajectory.

If we can replicate the system into an ensemble of identical
systems and probe each one with a different input, can the
parameter estimates converge to their true values under more
relaxed conditions than with just one test system? In this
work, we answer this question in the affirmative, provided
that a collective persistence of excitation condition holds.
The condition ensures that a minimal “overall” level of input
excitation is present within the communication network.

As a main ingredient of our collaborative identification
scheme, we develop a parameter estimator based on a
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combination of linear consensus and local system identifica-
tion. Consensus, agreement, and flocking have been widely
studied in computer science and dynamical systems, see [1],
[2] and references therein for a good introduction. The
closest works to ours, [3], [4], solve a sensor fusion problem
in robotic coverage applications and characterize the role
of persistently excited agents as knowledge leaders in the
network. More recently, similar gradient-based schemes have
been analyzed with noise in [5] and sampled data in [6].

We expand upon classical parameter convergence results
(e.g., [7], [8], [9]) by generalizing to the networked commu-
nication case. Our main contribution is a notion ofcollective
persistence of excitation that takes advantage of the infor-
mation shared between agents. As a special example of the
condition, we show that parameter estimates can be made to
converge to their true values even if no single agent uses a
persistently exciting input.

The paper is organized as follows. In§II, we review linear
consensus and set up the collaborative system identification
problem. The main result, Theorem 1, summarizes the collec-
tive PE condition. In§III, we motivate the estimator dynam-
ics and show how collective PE translates to networked linear
dynamical systems. For easier digestion, we prove the scalar
version of Theorem 1 in§IV, and give vector modifications
in the appendix. A numerical example is given in§V, and
remarks in§VI conclude the paper.

II. D ISTRIBUTED CONSENSUS

A. Preliminaries

An undirected graphG = (V, E) is a finite set ofn
verticesV = {v1, . . . , vn} together with a set ofm edges
E = {e1, . . . , em}. We sometimes writei for vi. An edgeek
is an unordered pair of vertices{vi, vj} ⊆ V. The adjacency
matrix of G is a matrixA = [aij ] ∈ R

n×n with entries

aij =

{
+1, if {vi, vj} ∈ E ,
0, otherwise.

The adjacency matrix is symmetric (A = AT ) for undirected
graphs. The neighborhood of a vertexvi consists of the set
of adjacent vertex indicesNi = {j | {vi, vj} ∈ E}. The
degree ofvi, written deg(vi), is the number of neighbors
|Ni| of that vertex, and the degree matrix is the diagonal
matrix D = diag(deg(v1), . . . , deg(vn)) ∈ R

n×n.
The graph LaplacianL = LT ∈ R

n×n is defined as

L = D −A.

The Laplacian matrix is positive semidefinite, which we write
asL � 0, wheneverG is connected. This follows from,e.g.,



the fact thatL is (weakly) diagonally dominant with strictly
positive entries on the diagonal. In general, we writeA � B
to meanA−B � 0 in the matrix sense.

A key property of connected graphs is that all eigenvalues
λ1, . . . , λn of L are strictly positive except for the smallest,
which is zero. We order the eigenvalues ofL as

0 = λ1 < λ2 ≤ · · · ≤ λn.

The second smallest eigenvalueλ2 is the known as the
algebraic connectivity ofG. The (column) eigenvector1 =
(1, . . . , 1) ∈ R

n corresponds to the zero eigenvalue sub-
space. In particular,

L1 = 0, 1
TL = 0.

B. Parameter Estimator Dynamics

An ensemble ofn agents has communication topologyG:
each vertexvi is anagentand each edgeek = {vi, vj} is an
allowed (bidirectional)communication linkbetween agentsi
and j. At any time t ≥ 0, agenti can measure a surrogate
state time seriesxi(t) ∈ R

q and a real-valued outputyi(t) ∈
R. The surrogate statexi(t) can be, for example, a filtered
version of the agent’s true dynamical state. We model the
outputyi(t) as a linear combination of parameters,

yi(t) = θTφ(xi(t)), (1)

whereφ : Rq → R
p is a known regressor andθ ∈ R

p is a
vector of fixed but unknown coefficients.

xi(t)

{

θ̂j(t) : j ∈ Ni

}

θTφ(xi(t))

θ̂(t)Tφ(xi(t))

+
consensus

eq. (3)

1

s

− ∆yi

yi(t)

ŷi(t) ˙̂
θi(t)

θ̂i(t)

Fig. 1. Each agent in the network implements the estimator dynamics (3).

In order to determine the parameter vectorθ, each agent
i has an estimatêθi(t) of θ made from local measurements
and any information communicated by the agent’s neighbors.
The agent generates a local prediction of the output,

ŷi(t) = θ̂i(t)
Tφ(xi(t)), (2)

and attempts to decrease its output prediction error∆yi =
ŷi−yi by modifying θ̂i with time. For brevity, defineφi(t) =
φ(xi(t)). We consider the combined estimator dynamics

d

dt
θ̂i = −γφi(t)(ŷi − yi)

+
∑

j∈Ni

aij(θ̂j − θ̂i), i = 1, . . . , n.
(3)

With the first term of (3) we seek to reduce the local output
prediction error. The constant estimation gainγ > 0 controls
the local information fusion rate. Notice that this term is

linear time-varying with the parameter estimatesθ̂i, which
can be seen by substituting (2) into (3). The second term, a
sum over the neighborsNi, presents a mechanism for global
parameter consensus by ensuring thatθ̂i does not stray too
far from any neighborinĝθj , wherej ∈ Ni. In control theory
terms, these dynamics describe a linear consensus controller
driven by the learning signals−γφi(t)(ŷi − y).

The main result of this paper is that the identified pa-
rameters governed by dynamics (3) asymptotically achieve
consensuŝθ1 = · · · = θ̂n with all signals remaining bounded.
In addition, if a collective persistence of excitation condition
is met, the parameter errors∆θi = θ̂i − θ converge to zero.
The main result is summarized in the following theorem.

Theorem 1. Suppose thatG is connected and each regressor
φi(t) = φ(xi(t)) remains bounded with bounded first deriva-
tive for all i = 1, . . . , n. Then the dynamics(3) exhibit

1) bounded internal signals:̂θi(t) and ŷi(t) are bounded
for all i = 1, . . . , n and for all t ≥ 0,

2) asymptotic zero prediction error:∆yi(t) = ŷi(t) −
yi(t) → 0 as t → ∞ for all i = 1, . . . , n.

3) asymptotic parameter consensus:θ̂j(t)− θ̂i(t) → 0 as
t → ∞ for all i, j = 1, . . . , n.

If in addition there exist positive real numbersm1,m2 > 0
such that for allt0 ≥ 0 and t > t0 the matrix inequality

m2I � 1

t− t0

∫ t

t0

n∑

i=1

φi(τ)φi(τ)
T dτ � m1I (4)

holds, then we also have

4) asymptotic parameter convergence:the parameter er-
rors ∆θi(t) = θ̂i(t) − θ → 0 as t → ∞ for all
i = 1, . . . , n.

The condition (4) encodes a notion ofcollective persis-
tence of excitation (PE). For the trivial network with a single
agent (n = 1), collective PE reduces to PE of a single
regressor

m2I � 1

t− t0

∫ t

t0

φ1(τ)φ1(τ)
T dτ � m1I, (5)

which is sufficient to obtain parameter convergence in tra-
ditional system identification where parameter consensus
plays no explicit role [7], [8], [9]. From linearity of the
integral in condition (4), collective PE occurs in an ensem-
ble {φ1, . . . , φn} of regressors if, for example, any of the
following types of excitation take place:

• Enlightened: a few φi are persistently exciting,
• Total: everyφi is persistently exciting,
• Intermittent: there exists an unbounded sequence of

times t1, t2, . . . such that someφi obeys (5) in each
interval [tk, tk+1],

• Collaborative: none of theφi is persistently exciting,
but condition (4) still holds.

In the first two cases, distinguished agents have the role of
a knowledge leader in the network (cf. [4]). The last two
reveal that parameter convergence can still occur even if
no single agent can claim leadership over all parameters,



because the information shared through consensus reconciles
any PE deficiency with other agents. This point is explored
further in §V.

The hypothesis of Theorem 1 can also be rephrased with
conditions on the regressor function itself,e.g., φ : Rq → R

p

uniformly continuous inx. We prove Theorem 1 for realθ
in §IV. The proof for vectorθ ∈ R

p (p > 1) is relegated to
the appendix.

III. SYSTEM IDENTIFICATION

A. Instantaneous Objective Minimization

We reinterpret the dynamics (3) as instantaneous mini-
mization of a particular cost function. The dynamics arise
from two main desires for the network as a whole. First,
all local estimateŝθi should converge to the same value as
t → ∞, and second, the value to which the local estimates
converge should be the trueθ. Define at each timet ≥ 0 an
instantaneous quadratic costJ : Rp × · · · ×R

p → R,

J(θ̂1(t), . . . , θ̂n(t)) =
n∑

i=1

γJi(θ̂i(t)) +
∑

{vi,vj}∈E

aij
2

∥
∥θ̂j(t)− θ̂i(t)

∥
∥
2

2
, (6)

with variablesθ̂i(t) ∈ R
p and local prediction costsJi :

R
p → R for all i = 1, . . . , n. The dynamics (3) can be

recovered from the gradient flow

d

dt
θ̂i = − ∂J

∂θ̂i
, i = 1, . . . , n, (7)

with quadratic local prediction costs

Ji(θ̂i(t))
∆
=

1

2

(
ŷi(t)− yi(t)

)2
, i = 1, . . . , n,

whereŷi(t) is given in terms of̂θi(t) by the local prediction
equation (2), andyi(t) comes from an online measurement.
The learning rateγ > 0 trades off instantaneous prediction
error with total parameter disagreement.

We present quadraticJi for simplicity, though it is
straightforward to devise schemes robust to process noise,
communication noise, unmodeled dynamics, and parameter
drift, see [10], [11], [12]. For example, if instead we use

Ji(θ̂i(t))
∆
=

∫ t

0

(
θ̂i(t)

Tφ(xi(τ))− yi(τ)
)2

dτ

in the cost (6), our collaborative identification scheme be-
comes more robust to measurement noise. If the prediction
costs are zero (Ji = 0) and p = 1, the flow (7) reduces to
gradient flow on the quadratic disagreement function

J(θ̂1, . . . , θ̂n) =
∑

{vi,vj}∈E

aij
2

(
θ̂j − θ̂i

)2
,

which is the classical linear consensus flow˙̂θ = −Lθ̂,
see [1], [2]. We can also reformulate the cost (6) as a
constrained objective, rather than a quadratically penalized
objective, to obtain second order dynamics (PI control) with
parameter consensus [13], [14].

B. Dynamical System Identification and Sufficient Richness

The persistence of excitation condition (4) is awkward to
verify for generic dynamical systems even in the classical
single agent setting (n = 1). For linear dynamical systems,
it can be shown that a sinusoidal input with enough indepen-
dent frequency components,i.e., an input that issufficiently
rich, will generate the persistence of excitation necessary for
parameter convergence [11], [15].

We now demonstrate how sufficient richness translates to
the collaborative multi agent setting by example. Suppose the
nominal system to be identified is the (stable) single input
linear system

ẋ(t) = ax(t) + bu(t),

wherea < 0 andb are constant (unknown) parameters. With
our goal to determinea and b, we instantiate an ensemble
of identical systems whose communication structure is orga-
nized by the graphG. Each agent chooses their own input
ui(t) ∈ R and observes the resulting statexi(t) ∈ R for all
i = 1, . . . , n. The dynamics are

ẋi(t) = axi(t) + bui(t), i = 1, . . . , n. (8)

Note that the dynamics (8) are of the nominal form (1),
whereyi(t) ∈ R is the state derivativėxi(t), the regressor
is φi(t) = (xi(t), ui(t)) ∈ R

2, and the unknown parameter
vector is θ = (a, b) ∈ R

2. In practice, the time derivative
ẋi(t) is not a signal available for measurement, so we
often (linearly) filter both sides of (8) and redefine surrogate
outputs and regressors by their filtered versions.

In the classical setting (n = 1), condition (4) is satisfied
if we chooseu(t) = sin(ωt) with ω 6= 0, because

1

t− t0

∫ t

t0

[
x(τ)
u(τ)

]
[
x(τ) u(τ)

]
dτ

eventually has bounded positive eigenvalues. Note that the
choice ofu(t) determinesx(t), and hence the value of the
integral above. In the multi agent setting (n > 1), there is
considerably more design freedom in choosing the inputs
ui(t) to obtain desired parameter convergence dynamics
while maintaining collective PE, and hence a guarantee of
parameter convergence.

For example, it suffices thatui(t) = sin(ωt) for some
i ∈ {1, . . . , n}, while the rest of theuj(t), for j 6= i,
are arbitrary. The distinguished agenti can be thought of
as enlightenedto the true dynamics of the system because
that agent is probed with a known sufficiently rich input.
Parameter consensus then ensures that all other agents reach
the same conclusion about the values ofa and b as the en-
lightened agenti. Moreover, if all agents are enlightened, as
is the case intotal excitation, the designer of the collaborative
identification system can trade off parameter dynamics (time)
against the number of agents (space).

IV. CONVERGENCE OFPARAMETER DYNAMICS

As stated earlier, we will prove Theorem 1 for simulta-
neous identification and consensus on a single real-valued
parameterθ ∈ R

p, p = 1. The casep > 1 is essentially the



same with more involved bookkeeping. The proof modifica-
tions for p > 1 are given in the appendix.

The proof relies on a standard result of analysis that a
function which has a finite limit and uniformly continuous
derivative has derivative that converges to zero [16]. Known
as Barbalat’s lemma, restated below in its integral form, it
is central to proving Theorem 1, parts 1–3.

Lemma (Barbalat). Let f : [0,∞) → R be a uniformly
continuous function and suppose thatlimt→∞

∫ t

0
f(τ) dτ

exists and is finite. Thenf(t) → 0 as t → ∞.

To obtain parameter convergence in Theorem 1, part 4,
we will use the persistence of excitation condition from [7],
which gives necessary and sufficient conditions for the
uniform asymptotic stability of a time-varying autonomous
system. It says that the origin is the unique stable equilibrium
of ẋ = −P (t)x, if the matrix−P (t) ∈ R

n×n is stable, on
average, in any direction inRn. The condition below can
be expressed in many ways, and we direct the reader to the
classical references [7], [8], [9], [11] for additional insight.

Theorem 2 (Morgan and Narendra 1977). SupposeP (t) is a
symmetric positive semidefinite matrix of bounded piecewise
continuous functions. Then the equationẋ = −P (t)x is
uniformly asymptotically stable if and only if there are real
numbersa > 0 and b such that for allt0 ≥ 0 and t ≥ t0,

∫ t

t0

wTP (τ)w dτ ≥ a(t− t0) + b

for all fixed unit vectorsw.

Proof of Theorem 1 forp = 1. Stack the real componentŝθi
into a column vector̂θ = (θ̂1, . . . , θ̂n) ∈ R

n and let the
parameter error be∆θ = θ̂ − θ1 ∈ R

n. In view of the
estimator definitions in (2), each agent’s individual learning
signal depends on∆θ via

−γφ(xi)(ŷi − yi) = −γφ(xi)
2∆θi.

Putting these together, the individual dynamics (3) can be
aggregated in matrix form as

d

dt
∆θ = −L∆θ − γΦ∆θ (9)

whereΦ(t) = diag(φ2
1(t), . . . , φ

2
n(t)) ∈ R

n×n, and we used
the identityL∆θ = L(θ̂ − θ1) = Lθ̂.

Consider the candidate Lyapunov function

V (∆θ) =
1

2
∆θT∆θ.

The time derivative ofV along solution trajectories of (9) is

V̇ (∆θ) =
1

2

(( d

dt
∆θ
)T

∆θ +∆θT
( d

dt
∆θ
))

=
1

2

((
− L∆θ − γΦ∆θ

)T
∆θ

+∆θT
(
− L∆θ − γΦ∆θ

))

= −∆θTL∆θ − γ∆θTΦ∆θ (10)

≤ 0,

where the inequality follows from the positive semidefinite-
ness ofL andΦ(t) and from the learning rate assumption
γ > 0.

Since V is bounded below (V ≥ 0) and nonincreasing
(V̇ ≤ 0), it converges to a limit ast → ∞. Furthermore,V
is uniformly bounded above by its initial value, because

V
(
∆θ(t)

)
= V

(
∆θ(0)

)
+

∫ t

0

V̇
(
∆θ(s)

)

︸ ︷︷ ︸

≤0

ds

≤ V
(
∆θ(0)

)
,

hence∆θ is bounded, from which we conclude that the local
estimatesθ̂i = ∆θi + θ and predictionŝyi = θ̂iφ(xi) are
bounded. This finishes the proof of part 1. Next, we integrate
both sides of (10),

V (t)− V (0) = −
∫ t

0

∆θ(τ)TL∆θ(τ) + γ
n∑

i=1

|∆yi(τ)|2 dτ,

and let t → ∞. Note that the prediction errors∆yi(t)
are square integrable for alli = 1, . . . , n. Moreover, the
quadratic disagreement∆θTL∆θ has a finite integral. If we
can prove uniform continuity of∆yi and ∆θTL∆θ, then
Barbalat’s lemma would imply parts 2 and 3.

The derivative of∆yi is

d

dt
∆yi =

( d

dt
∆θi

)T

φ(xi(t)) + ∆θTi Dφ(xi(t))ẋi(t), (11)

whereDφ(xi(t)) ∈ R
p×q is the Jacobian matrix ofφ with

respect tox evaluated atxi(t). Sinced∆θ/dt is bounded as
a result of (9), andxi(t), ẋi(t) are bounded by assumption
with φ continuously differentiable with respect tox, the
derivative (11) is bounded. Thus∆yi → 0 as t → ∞,
proving part 2. Next,

d

dt
∆θTL∆θ = −∆θT (2LTL+ γ(ΦL+ LΦ))∆θ (12)

is bounded because it is a sum of bounded terms, thus
∆θTL∆θ → 0 as t → ∞. In particular, this meansL∆θ =
Lθ̂ → 0, where again we usedL1 = 0. For a connected
graph, the null space of the Laplacian isnull(L) = span{1},
henceθ̂j − θ̂i → 0 for all i, j = 1, . . . , n. In other words,
the parameter estimates asymptotically reach consensus. This
completes the proof of part 3.

For part 4, note that the dynamics of∆θ in (9) are linear
time-varying, so it suffices to show that the condition in
Theorem 2 is met forP (t) = L+ γΦ(t) andb = 0.

Let the Laplacian have eigendecompositionLvi = λivi
with λi > 0 for i = 2, . . . , n. Complete the basis ofRn so
{ 1√

n
1, v2, . . . , vn} is an orthonormal set. Write a unit vector

w in this basis as

w =
α√
n
1+

n∑

j=2

βjvj , (13)

so that(α, β2, . . . , βn) ∈ R
n has unit norm. Pickt0 ≥ 0

and t > t0, and denote the time average of a quantity over
the interval[t0, t] by a bar over the quantity, as in

Φ̄
∆
=

1

t− t0

∫ t

t0

Φ(τ) dτ,



so that collective PE (4) impliesm2 ≥ 1
T Φ̄1 ≥ m1. Then,

1

t− t0

∫ t

t0

wT (L+ γΦ(τ))w dτ

= wTLw + wT Φ̄w ≥ max{wTLw, γwT Φ̄w}, (14)

becauseL and Φ̄ are positive semidefinite. Our goal is to
bound the maximum (14) away from zero for all time. By
substituting (13) into (14) and usingL1 = 0 and1TL = 0,
we bound the first term in the maximum below by

wTLw =

n∑

i=2

βiv
T
i L

n∑

j=2

βjvj

=

n∑

i=2

n∑

j=2

βiβjλjv
T
i vj =

n∑

i=2

λiβ
2
i

≥ λ2‖β‖22
= λ2(1− α2),

where β = (β2, . . . , βn) ∈ R
n−1 and in the last line we

used‖β‖22 = 1−α2. Next, forV
∆
= [v2, . . . , vn] ∈ R

n×n−1,
the second term has a lower bound

wT Φ̄w =
α2

n
1
T Φ̄1+ βTV T Φ̄V β

︸ ︷︷ ︸

≥0

+
2α√
n
1
T Φ̄V β

≥ α2

n
1
T Φ̄1
︸ ︷︷ ︸

≥m1

−2|α|√
n
|1T Φ̄V β|

≥ α2

n
m1 −

2|α|√
n

‖Φ̄1‖1
︸ ︷︷ ︸

≤m2

‖V β‖∞
︸ ︷︷ ︸

≤‖β‖2

≥ α2

n
m1 − 2m2

√

α2

n
(1− α2).

The second line follows form Cauchy-Schwarz and the third
from Hölder’s inequality. Putting these together gives the
required lower bound

max{wTLw, γwT Φ̄w} ≥ a > 0,

where the worst case rate constanta is

a = inf
|α|≤1

max
{

λ2(1− α2),

γ
α2

n
m1 − 2γm2

√

α2

n
(1− α2)

}

. (15)

Note that the infimum in (15) is attained by continuity, and
is strictly positive (ifa and the first term is zero, then so is
the second,γm1/n = 0, a contradiction).

V. EXAMPLE

Consider the example communication network in Fig. 2
(n = 3, m = 3, p = 2). Three agents are tasked with
identifying a true parameter vectorθ = (θ1, θ2) = (1,−1) ∈
R

2 using constant regressors. The system to be identified
is yi(t) = θTφi(t). We let φi : [0,∞) → R

2 be given by
φi(t) = (ci, di), whereci anddi are fixed real constants for
all i = 1, 2, 3.

v1

v2v3

e1

e2

e3

Fig. 2. Communication topology withn = 3 agents andm = 3 links.

Eachφi is not by itself persistently exciting, as the time
average of a constant regressor outer product has rank one:

1

t− t0

∫ t

t0

[
ci
di

]
[
ci di

]
dτ =

[
ci
di

]
[
ci di

]
� m1I

for anym1 > 0, however, the collective PE condition (4) is
still satisfied if theφi are not scalar multiples of the same
vector,

m2I � 1

t− t0

∫ t

t0

3∑

i=1

[
ci
di

]
[
ci di

]
dτ � m1I

for somem1,m2 > 0. In other words, collective PE holds for
constant regressors provided they span the parameter space
R

2. With rateγ = 1, the parameter estimatesθ̂i ∈ R
2 evolve

according to







˙̂
θ1 = −φ1(t)(ŷ1 − y1) + k(θ̂2 − θ̂1) + k(θ̂3 − θ̂1)

˙̂
θ2 = −φ2(t)(ŷ2 − y2) + k(θ̂3 − θ̂2) + k(θ̂1 − θ̂2)

˙̂
θ3 = −φ3(t)(ŷ3 − y3) + k(θ̂1 − θ̂3) + k(θ̂2 − θ̂3).

In the estimator dynamics above, consensus terms link the
evolution of θ̂i to its neighboringθ̂j for j ∈ Ni. Fig. 3
illustrates the parameter estimates as a function of time for
each of the three agents with (k = 1) and without (k = 0)
consensus. We used the constant regressors

φ1(t) =

[
1
2

]

, φ2(t) =

[
1
−2

]

, φ3(t) =

[
1
0

]

.

Without consensus (k = 0, Fig. 3a), individual parameter
estimates depend solely on underdetermined measurements
made at that node, so we have no reason to expect anyθ̂i to
converge toθ. With consensus (k = 1, Fig. 3b), the agents
collaboratively identify the true parameter.

Isolated agents develop their own (possibly inconsistent)
parameter estimates, which replicate their observed input-
output relationship. This is indicated in Fig. 4 as a propen-
sity toward the vertical axis. Parameter evolution is frozen
once the output prediction error becomes zero, because the
local prediction objectivesJi cannot be made any smaller.
Collective PE and consensus allow both prediction error and
parameter error to approach the origin by adding an extra
regularization (disagreement) term to the objective.
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Fig. 3. (a): individual parameter estimatesθ̂i fail to converge toθ in a network of three agents without a consensus mechanism in place, because each
agent’s input is not by itself persistently exciting, (b): with the same inputs and consensus, all parameter estimates to converge to the true value.
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Parameter error vs. prediction error

Fig. 4. Prediction error (horizontal axis) tends to zero forall three agents
with (solid) and without (dashed) consensus. Parameter error (vertical axis)
also tends to zero with consensus due to collective PE.

VI. CONCLUSION

In this paper we showed that parameter consensus plays
an important role in generalizing persistence of excitation to
the multi agent setting. Parameter convergence is governed
by two main factors: the algebraic connectivity of the com-
munication graph and the level of collective persistence of
excitation in the network. Our proof of asymptotic parameter
convergence revealed the tension between these two factors,
and that a certain kind of ergodicity can allow for parameters
to converge even in the absence of leaders in the network that
profess their own exciting input. The ideas can be readily

extended to model-referenced adaptive control settings, and
reinstantiated with all their associated robustness modifi-
cations (e.g., σ-mod., projection operations [10], [12]), as
well as robustness modifications to consensus itself (e.g., PI
control, periodic or sampled updates).
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APPENDIX

Proof of Theorem 1 forp > 1. Form column vectorŝθ =
(θ̂1, . . . , θ̂n) ∈ R

np and∆θ = (∆θ1, . . . ,∆θn) ∈ R
np by

stacking the componentŝθi ∈ R
p and∆θi = θ̂i − θ ∈ R

p

for all i = 1, . . . , n. The dynamics (9) are now

d

dt
∆θ = −(L⊗ Ip)∆θ − γΦ(t)∆θ,

where⊗ is the Kronecker product,Ip ∈ R
p×p is the identity

matrix, andΦ : [0,∞) → R
np×np is block diagonal,

Φ(t) =






φ1(t)φ1(t)
T · · · 0

...
. ..

...
0 · · · φn(t)φn(t)

T




 .



The candidate Lyapunov function

V (∆θ) =
1

2
∆θT∆θ =

1

2

n∑

i=1

∆θTi ∆θi

has nonpositive derivative

V̇ (∆θ) = −∆θT
(
(L⊗ Ip) + γΦ(t)

)
∆θ ≤ 0,

with V̇ → 0 as t → ∞ by the same arguments as before,
thus parts 1-3 follow. For part 4, the mixed product property
AB⊗CD = (A⊗C)(B⊗D) for appropriately sized matrices
A, B, C, andD implies that the spectrum ofL⊗Ip is related
to the spectrum ofL andIp by

(L⊗ Ip)

(
1√
n
1⊗ ej

)

= 0,

(L⊗ Ip) (vi ⊗ ej) = λi (vi ⊗ ej) ,

for all i = 2, . . . , n and j = 1, . . . , p, whereej ∈ R
p is the

jth unit vector. Write a unit vectorw ∈ R
np in this basis as

w =

p
∑

j=1

αj

1√
n
1⊗ ej +

n∑

i=2

p
∑

j=1

βijvi ⊗ ej ,

with (α, β) ∈ R
p × R

(n−1)p having unit norm. As before,
let Φ̄ be the average ofΦ over [t0, t]. We wish to bound

max{wT (L⊗ Ip)w, γw
T Φ̄w}

uniformly below by a strictly positive constant. Using the
mixed product property and‖α‖22 + ‖β‖22 = 1 we have

wT (L⊗ Ip)w =

n∑

i=2

p
∑

j=1

λiβ
2
ij

≥ λ2(1− ‖α‖22).
For the second termwT Φ̄w, note that

(1⊗ ei)
T Φ̄(1⊗ ej) = (φ1φT

1 )ij + · · ·+ (φnφT
n )ij ,

hence

wT Φ̄w =
1

n

p
∑

i=1

p
∑

j=1

αiαj(1⊗ ei)Φ̄(1⊗ ej)

+
2√
n

n∑

i=2

p
∑

j=1

p
∑

k=1

αkβij(1⊗ ek)
T Φ̄(vi ⊗ ej)

+

n∑

i=2

p
∑

j=1

n∑

k=2

p
∑

l=1

βijβkl(vi ⊗ ej)Φ̄(vk ⊗ el)

︸ ︷︷ ︸

≥0

≥ 1

n
αT

(
n∑

i=1

φiφT
i

)

α

− 2m2n√
n

n∑

i=2

p
∑

j=1

p
∑

k=1

|αkβij |

≥ ‖α‖22
n

m1 − 2m2n
√

‖α‖22(1− ‖α‖22),

thus a loose uniform lower bound is

max{wT (L⊗ Ip)w, γw
T Φ̄w} ≥ a > 0.

A continuity argument should convince the reader that

a = inf
‖α‖2≤1

max
{

λ2(1− ‖α‖22),

γ
‖α‖22
n

m1 − 2γm2n
√

‖α‖22(1− ‖α‖22)
}

is strictly positive.
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