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Abstract— Classical schemes in system identification and combination of linear consensus and local system identifica
adaptive control often rely on persistence of excitation to tjon. Consensus, agreement, and flocking have been widely
guarantee parameter convergence, which may be difficult to studied in computer science and dynamical systems, see [1],

achieve with a single agent and a single input. Inspired by - . .
consensus systems, we extend classical parameter adaptation t [2] and references therein for a good introduction. The

the multi agent setting by combining an adaptive gradient law closest works to ours, [3], [4], solve a sensor fusion proble
with consensus dynamics. The gradient law represents the main in robotic coverage applications and characterize the role
learning signal, while consensus dynamics attract each agent's of persistently excited agents as knowledge leaders in the
parameter estimates toward those of its neighbors. We show \anyork. More recently, similar gradient-based schemes ha
that the resyltlng_ decentralized online parameter estimator can b lvzed with noise in I5 d led d in 16
be used to identify the true parameters of all agents, even if no een analyzed wit n0|se. in [5] and sampled data in [6].
single agent employs a persistently exciting input. We expand upon classical parameter convergence results
(e.g, [7], [8], [9]) by generalizing to the networked commu-
|. INTRODUCTION nication case. Our main contribution is a notioncoflective

We envision collaborative system identification applicapersistence of excitation that takes advantage of the -infor
tions where identical intelligent agents can communicatgation shared between agents. As a special example of the
with each other, and are tasked with reaching consensus @shdition, we show that parameter estimates can be made to
some set of common parameters. While we are motivate@nverge to their true values even if no single agent uses a
by the case where these parameters specify the continuQygsistently exciting input.
dynamics for a nominal model class, of which every agentin The paper is organized as follows. §H, we review linear
the system is an instance, our information sharing framewogonsensus and set up the collaborative system identificatio
readily applies to more general collaborative filtering angroblem. The main result, Theorem 1, summarizes the collec-
estimation schemes. For example, the parameters can refgeé PE condition. Ir§lil, we motivate the estimator dynam-
to a static (or slowly changing) global state that each agefs and show how collective PE translates to networked finea
in the network can only partially observe. Either way, theyynamical systems. For easier digestion, we prove therscala
parameters are determined in a decentralized, adaptive Wgftsion of Theorem 1 i§lV, and give vector modifications
through an online scheme that integrates local measuremey the appendix. A numerical example is given§d, and

with communicated information. _ remarks in§VI conclude the paper.
Classical (single agent) system identification algorithms
determine model parameters by probing the system with an Il. DISTRIBUTED CONSENSUS

a priori'selected input and.observing the output. If the iNPUR  preliminaries
is “exciting” enough to stimulate all the relevant internal . . -
dynamical modes, the model parameters can be backed ouf\n undirected graphg = (V.€) is a finite set ofn
by adaptation. Otherwise, most algorithms can only asicerta’€ticesV = {vi, ..., v, } together with a set ofn edges
the parameters to the extent that they replicate the observe = 1¢1:- -+ €m}. We sometimes write for v;. An edgecy,
input-output relationship. Designing an input that gugeea IS @n unordered pair of verticgs;, v;} C V. The adjacency
parameter convergence is difficult, because the persistghc Matrix of G is a matrixA = [a;;] € R™*" with entries
excitation (PE) conditions that must be checked often requi +1, if {v;,v;} €&,
solving for the full system trajectory. Q5 = { 0, otherwise

If we can replicate the system into an ensemble of identical
systems and probe each one with a different input, can tide adjacency matrix is symmetrie (= A”) for undirected
parameter estimates converge to their true values undes m@raphs. The neighborhood of a vertexconsists of the set
relaxed conditions than with just one test system? In thigf adjacent vertex indiced/; = {j | {vi,v;} € £}. The
work, we answer this question in the affirmative, providedlegree ofv;, written deg(v;), is the number of neighbors
that a collective persistence of excitation condition Bold |V;| of that vertex, and the degree matrix is the diagonal
The condition ensures that a minimal “overall” level of inpu matrix D = diag(deg(v1), ..., deg(v,)) € R"*".
excitation is present within the communication network. The graph Laplaciad. = LT € R™*" is defined as

As a main ingredient of our collaborative identification
scheme, we develop a parameter estimator based on a

The authors are with the Control and Dynamical Systems Depattme The LapIaC|an matrix _'S positive Sem'd?fm'te’ which we it
California Institute of Technology, Pasadena, CA USA. as L = 0, whenevel§ is connected. This follows frore.g,

L=D-A.



the fact thatZ is (weakly) diagonally dominant with strictly linear time-varying with the parameter estimatgs which
positive entries on the diagonal. In general, we wAte- B can be seen by substituting (2) into (3). The second term, a
to meanA — B > 0 in the matrix sense. sum over the neighbot&’;, presents a mechanism for global

A key property of connected graphs is that all eigenvalugsarameter consensus by ensuring thatloes not stray too
A1,..., A, OF L are strictly positive except for the smallest,far from any neighborin@j, wherej € N;. In control theory
which is zero. We order the eigenvaluesiofas terms, these dynamics describe a linear consensus centroll

driven by the learning signals~o; (¢)(9; — v).
0=A <Az <-- <A The main result of this paper(is)(that tr)1e identified pa-

The second smallest eigenvalug is the known as the rameters governed by dynamics (3) asymptotically achieve

algebraic connectivity of;. The (column) eigenvectar = consensu§; = --- = 6,, with all signals remaining bounded.
(1,...,1) € R" corresponds to the zero eigenvalue subln addition, if a collective persistence of excitation cioh
space. In particular, is met, the parameter errofsg; = 6; — 6 converge to zero.

T The main result is summarized in the following theorem.
L1=0, 1'L=0o.

Theorem 1. Suppose thaf is connected and each regressor

B. Parameter Estimator Dynamics $i(t) = ¢(x;(t)) remains bounded with bounded first deriva-
An ensemb_le of agents has communication topqlogy tive for all : = 1,...,n. Then the dynamic&3) exhibit
each vertex; is anagentand each edge; = {vi,v;}isan 1y pounded internal signalé;(¢) and §;(t) are bounded
allowed (bidirectionalcommunication linkbetween agents foralli=1,...,n and for allt >0,
state time series;(¢) € R? and a real-valued outpyt(t) € yi(t) > 0ast s oo foralli=1,...,n.
R. The surrogate state;(¢) can be, for example, a filtered  3) asymptotic parameter consensis(t) — 6;(t) — 0 as
version of the agent's true dynamical state. We model the = 4 . o for all ij=1,...,n.
outputy;(¢) as a linear combination of parameters, If in addition there exist positive real numbens;, ms > 0
yi(t) = 0T p(x4(t)), (1) such that for allty > 0 andt > ¢, the matrix inequality
where¢ : R? — R? is a known regressor amtic R? is a 1 /t S T
. e 1> i i dr = mqI 4
vector of fixed but unknown coefficients. el =g to Ji, ;¢ (7)¢ulr)" dr Z m @
{éj(t) je M} holds, then we also have
) 07 5(i(1)) vi(t) ! 4) asymptotic parameter convergentiee parameter er-
T T; ) — 0.(4) —
i ] Ay; [consensud roislAel(t) = 0;(t)— 0 — 0 ast — oo for all
@—) eq(3) 1=1,...,n.
O(t)T p(zi(t)) J The condition (4) encodes a notion obllective persis-
9i(t) 9( 1) tence of excitation (PE). For the trivial network with a dimg
0;(t) 1] ! agent ¢ = 1), collective PE reduces to PE of a single
|i| regressor
1 ¢ T
Fig. 1. Each agent in the network implements the estimator dyssa(8). mol = t—to /) ¢1(1)1(7)" dm = ma 1, (5)
0

In order to determine the parameter vedioreach agent which is sufficient to obtain parameter convergence in tra-
i has an estimaté'(t) of & made from local measurementsditional system identification where parameter consensus
(]

and any information communicated by the agent's neighbor@l@ys no explicit role [7], [8], [9]. From linearity of the
The agent generates a local prediction of the output, integral in condition (4), collective PE occurs in an ensem-

A ble {¢1,...,¢,} of regressors if, for example, any of the
Gi(t) = 0:(t)" p(i(t)), (2) following types of excitation take place:
and attempts to decrease its output prediction efxgy = « Enlightened a few ¢; are persistently exciting,
4i —y; by modifyingd; with time. For brevity, define; (t) = » Total every ¢; is persistently exciting,

é(zi(t)). We consider the combined estimator dynamics . I_ntermittent there exists an unbounded sequence of
times t1,to,... such that somep; obeys (5) in each

igi =~y () (s — ys) interval [tg, tg+1],s
di L 3) « Collaborative none of theg; is persistently exciting,
+ 3 ai(0;-0;), i=1,...,n but condition (4) still holds.
JEN: In the first two cases, distinguished agents have the role of

With the first term of (3) we seek to reduce the local outpua knowledge leader in the networkf([4]). The last two
prediction error. The constant estimation gain- 0 controls reveal that parameter convergence can still occur even if
the local information fusion rate. Notice that this term isno single agent can claim leadership over all parameters,



because the information shared through consensus regsnciB. Dynamical System Identification and Sufficient Richness

any PE deficiency with other agents. This point is explored The persistence of excitation condition (4) is awkward to

further in§v. verify for generic dynamical systems even in the classical
Th.e. hypothesis of Theorem 1.car_1 also be rephrased W'é'i"hgle agent settinga(= 1). For linear dynamical systems,

conditions on the regressor function itselfg, ¢ : R? - R” it can be shown that a sinusoidal input with enough indepen-

uniformly continuous inz. We prove Theorem 1 for re#l  gent frequency componentise., an input that issufficiently

in §IV. The proof for vectord ¢ R” (p > 1) is relegated to rich, will generate the persistence of excitation necessary for

the appendix. parameter convergence [11], [15].

We now demonstrate how sufficient richness translates to

[1l. SYSTEM IDENTIFICATION _ . .
the collaborative multi agent setting by example. Suppbee t

A. Instantaneous Objective Minimization nominal system to be identified is the (stable) single input
We reinterpret the dynamics (3) as instantaneous miniinear system
mization of a particular cost function. The dynamics arise x(t) = ax(t) + bu(t),

from two main dqsires for the network as a whole. First, h 0 andb tant K ¢ With
all local estimate®); should converge to the same value adVnérea < U andb are constan (unknown) parameters. Wi

t — oo, and second, the value to which the local estimate®" goal to determine andb, we instantiate an ensemble
converé]e should be ’the tridle Define at each time > 0 an of identical systems whose communication structure is-orga

instantaneous quadratic coit R” x --- x R” — R, nized by the graphy. Each agent.chooses their own input
g S, u;(t) € R and observes the resulting statgt) € R for all

J(01(t),...,0,(1) = i=1,...,n. The dynamics are
i ~ Aij 1A A 2 L; = ; i ) = Ce .
S nGie)+ 3 o0 -5 © flf) = amld) +buld), i=1.om (@)
i=1 {viv;leg Note that the dynamics (8) are of the nominal form (1),

wherey;(t) € R is the state derivative;(t), the regressor
is ¢;(t) = (z;(t),u;(t)) € R?, and the unknown parameter
vector isf = (a,b) € R2. In practice, the time derivative
z;(t) is not a signal available for measurement, so we
d, oJ . often (linearly) filter both sides of (8) and redefine surtega
—b0,=——F, i=1,...,n, @) L .
dt 80; outputs and regressors by their filtered versions.
, . - In the classical settingn(= 1), condition (4) is satisfied
h local . .
with quadratic local prediction costs if we chooseu(t) = sin(wt) with w # 0, because
L@ﬁ»—ﬁ@@%yﬁn,i:L”wm 1 /Wﬂﬂ

[x(r) u(T)] dr
o N - t—to u(r)
whereg;(t) is given in terms ob);(¢) by the local prediction N )
The learning ratey > 0 trades off instantaneous predictionchoice ofu(t) determinesc(t), and hence the value of the
error with total parameter disagreement. integral above. In the multi agent setting & 1), there is
We present quadratic/; for simplicity, though it is considerably more (_Jlesign freedom in choosing the inpl_Jts
straightforward to devise schemes robust to process noide(t) to obtain desired parameter convergence dynamics
drift, see [10], [11], [12]. For example, if instead we use Parameter convergence.
. For example, it suffices that;(t) = sin(wt) for some
Jz(éz(t)) é/ (éi(t)T¢($i(T)) —yi(T))2d7' 1 € {1,...,n}, while the rest of theuj(t), for J 75 1,
0 are arbitrary. The distinguished agenhtan be thought of
in the cost (6), our collaborative identification scheme be?S enlightenedto the true dynamics of the system because

comes more robust to measurement noise. If the predictidfat agent is probed with a known sufficiently rich input.
costs are zeroJ; = 0) andp = 1, the flow (7) reduces to Parameter consensus then ensures that all other agertts reac

with variableséi(t) € RP and local prediction costd; :
R? — R for all i = 1,...,n. The dynamics (3) can be
recovered from the gradient flow

al 2

to

gradient flow on the quadratic disagreement function ~ the same conclusion about the values:aindb as the en-
. . @ o o lightened agent. Moreover, if all agents are enlightened, as
J(0y,...,0,) = Z %(9]- —6;)", is the case iftotal excitation, the designer of the collaborative
{vi,v;}€E identification system can trade off parameter dynamicse(tim

. _against the number of agents (space).
which is the classical linear consensus fléw= —L#,

see [1], [2]. We can also reformulate the cost (6) as a V- CONVERGENCE OFPARAMETER DYNAMICS
constrained objective, rather than a quadratically peedli  As stated earlier, we will prove Theorem 1 for simulta-
objective, to obtain second order dynamics (PI controlhwitneous identification and consensus on a single real-valued
parameter consensus [13], [14]. parameteld € RP, p = 1. The casep > 1 is essentially the



same with more involved bookkeeping. The proof modificawhere the inequality follows from the positive semidefinite

tions forp > 1 are given in the appendix.

ness of L and ®(¢) and from the learning rate assumption

The proof relies on a standard result of analysis that @ > 0.
function which has a finite limit and uniformly continuous Since V' is bounded below{( > 0) and nonincreasing
derivative has derivative that converges to zero [16]. Kmow(V" < 0), it converges to a limit ag — oo. Furthermorel/

as Barbalat's lemma, restated below in its integral form,
is central to proving Theorem 1, parts 1-3.

Lemma (Barbalat) Let f :
continuous function and suppose thiin; .. fo
exists and is finite. Thefi(t) — 0 ast — oo.

[0,00) — R be a un|f0rmly
T)dr

To obtain parameter convergence in Theorem 1, part

is uniformly bounded above by its initial value, because

V(A6(t)) = V(A6(0)) +/O V(Ad(s)) ds
<0

< V(A6(0)),
henceAd is bounded, from which we conclude that the local

we will use the persistence of excitation condition from, [7]€stimatesd; = Af; + 6 and predictionsj; = 0;¢(z;) are
which gives necessary and sufficient conditions for thgounded. This finishes the proof of part 1. Next, we integrate
uniform asymptotic stability of a time-varying autonomougPoth sides of (10),

system. It says that the origin is the unique stable equulibr
of & = —P(t)z, if the matrix —P(t) € R™*" is stable, on
average, in any direction ilR™. The condition below can

V(t) = V(0) /A9 )T LAG(T +72\Ay2 )|? dr,

i=1

be expressed in many ways, and we direct the reader to tAed lett — oo. Note that the prediction errordy;(t)

classical references [7], [8], [9], [11] for additional igkt.
Theorem 2(Morgan and Narendra 197.7puppose’(t) is a

symmetric positive semidefinite matrix of bounded ple(EEWI

continuous functions. Then the equatien= —P(¢)x

uniformly asymptotically stable if and only if there are Irea

numbersa > 0 and b such that for allty, > 0 and ¢ > ¢,

¢
/ wT P(TYwdr > a(t —to) +b

Jtg
for all fixed unit vectorsw.

Proof of Theorem 1 fop = 1. Stack the real componerﬂs
into a column vectord = (91,...,9n) € R™ and let the
parameter error beé\d = 6 — 01 € R™. In view of the
estimator definitions in (2), each agent’s individual leagn
signal depends orh\d via

—v¢(x:) (G5 — i) = =7 (xi)> A0

Putting these together, the individual dynamics (3) can b@

aggregated in matrix form as
d

200 = —LA) — 70AG (9)
where®(t) = diag(¢7(t), ..., ¢a(t)) € R"*", and we used
the identity LAO = L(0 — 01) = L6.

Consider the candidate Lyapunov function
1
V(A9) = iAeTAG.

The time derivative o along solution trajectories of (9) is

V(AG) = % <(CZA0)TA0 +A0T (iAH))
%(( — LAO — 7®A0) " A

+ 20T (~ LAG — 10A0) )

= —AOTLAG — yAOTDAS
<0,

(10)

are square integrable for all = 1,...,n. Moreover, the
quadratic disagreemetd” LA# has a finite integral. If we
can prove uniform continuity ofAy; and AT LA, then

Barbalat's lemma would imply parts 2 and 3.

The derivative ofAy; is

0= (500) 6(a:(0) + AT Dol ():(0), (1)

dt

where Dg(z;(t)) € RP*? is the Jacobian matrix ap with
respect tar evaluated at;(t). SincedA#/dt is bounded as
a result of (9), andc;(t), 4;(¢t) are bounded by assumption
with ¢ continuously differentiable with respect to, the
derivative (11) is bounded. ThuAy; — 0 ast — oo,

proving part 2. Next,

d

aA@TLM = —A0TQLTL +~(PL + LP))AO  (12)

is bounded because it is a sum of bounded terms, thus
AGTLAO — 0 ast — co. In particular, this meand Af =

6 — 0, where again we used1 = 0. For a connected
graph, the null space of the Laplaciamisll(L) = span{1},
henceH —6; > 0foralli,j =1,...,n. In other words,

the parameter estimates asymptotlcally reach consenbiss. T
completes the proof of part 3.

For part 4, note that the dynamics A% in (9) are linear
time-varying, so it suffices to show that the condition in
Theorem 2 is met foP(t) = L + y®(¢t) andb =0

Let the Laplacian have eigendecompositibn; = \;v;
with \; > 0 for ¢ = 2,...,n. Complete the basis & so
{ﬁl, vg,...,Un } iS an orthonormal set. Write a unit vector
w in this basis as

o n
= 71""26]"[}]', (13)
NI
so that(q, 8s,...,58,) € R™ has unit norm. Pick, > 0

andt > ty, and denote the time average of a quantity over
the intervallto, ¢] by a bar over the quantity, as in

1 t
/ o(7)dr,
t - tO tO

1>

®




so that collective PE (4) impliesi, > 17®1 > m,. Then, @

¢
! / wT (L +~®(7))wdr
t—to

= w! Lw + wT dw > max{w” Lw,ywT dw}, (14)

Jtg

becausel and ® are positive semidefinite. Our goal is to @ €9 @

bound the maximum (14) away from zero for all time. By

substituting (13) into (14) and usinfl = 0 and17 L = 0, Fig. 2. Communication topology with = 3 agents andn = 3 links.
we bound the first term in the maximum below by

wlLw = Al Ty ach¢; is not by itself persistently exciting, as the time
T Bivl Bjvj Each¢; i by itself i I iti he ti
=2 =2 average of a constant regressor outer product has rank one:
= BiBidjviv; = N} 1 e ¢
;Jz:; A j ; e d, [ci dj} dr = d [Ci di] F mal
> o811 . iy :
— Ao(1—a?) for any m; > 0, however, the collective PE condition (4) is
2 ’ still satisfied if theg; are not scalar multiples of the same
where 8 = (Ba,...,8,) € R*"! and in the last line we vector,
used||8|2 = 1—a2. Next, forV £ [vs, ..., v,] € R 1, . s
the second term has a lower bound mal = - 1t / 3 Lﬂ (e d] dr=mul
_ 2 _ B 2 B — 0 Jto = i
wTdw = 1781 4 fTVISV S +7011T©V5 =t
" >0 " for somem,, mo > 0. In other words, collective PE holds for
a® - 2a ~ constant regressors provided they span the parameter space
> 1791 —%IlebVBI R?2. With ratey = 1, the parameter estimatésc R? evolve
>my according to
a? 2l | =
> —my — 2= |11 |V B]leo 5 . s 5 s 5
= ﬁuw 01 =—¢1(t)(§1 — y1) + k(02 — 01) + k(05 — 01)
<mz <8l : R s s
, - b2 = —6a(t) (I — o) + k(B — 02) + k(B1 — 0)
« (6 .
- _ - — 2 A N A PN A A
=z Sy = 2me (1= a%). b3 = —3()(9s — y3) + k(01 — 03) + k(02 — b5).

The second line follows form Cauchy-Schwarz and the third
from Holder's inequality. Putting these together gives th
required lower bound

In the estimator dynamics above, consensus terms link the
@volution of §; to its neighboringd, for j € N;. Fig. 3
illustrates the parameter estimates as a function of time fo
max{w” Lw, ywTdw} > a > 0, each of the three agents witk & 1) and without g = 0)

consensus. We used the constant regressors
where the worst case rate constans

a= inf max A1~ 0?), o1 (t) = H éo(t) = [_12] bs(t) = H

laf<1
2 2
7&m1 — 2ymay /i(l _ az)}. (15) Without consensusk(= 0, Fig. 3a), individual parameter
n n

estimates depend solely on underdetermined measurements

Note that the infimum in (15) is attained by continuity, andnade at that node, so we have no reason to expect,ainy
is strictly positive (ifa and the first term is zero, then so isconverge tod. With consensusi(= 1, Fig. 3b), the agents
the second;m,/n = 0, a contradiction). 0 collaboratively identify the true parameter.

Isolated agents develop their own (possibly inconsistent)
parameter estimates, which replicate their observed input

Consider the example communication network in Fig. 2utput relationship. This is indicated in Fig. 4 as a propen-
(n =3, m = 3, p = 2). Three agents are tasked withsity toward the vertical axis. Parameter evolution is froze
identifying a true parameter vectér= (6,1,6,) = (1,—1) € once the output prediction error becomes zero, because the
R? using constant regressors. The system to be identifiéocal prediction objectives/; cannot be made any smaller.
is y;(t) = 0T ¢;(t). We letg; : [0,00) — R? be given by Collective PE and consensus allow both prediction error and
oi(t) = (¢, d;), wheree; andd; are fixed real constants for parameter error to approach the origin by adding an extra
alli=1,2,3. regularization (disagreement) term to the objective.

V. EXAMPLE
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(a) Without consensus (b) With consensus

Fig. 3. (a): individual parameter estimatésfail to converge tad in a network of three agents without a consensus mechanisiade,pbecause each
agent’s input is not by itself persistently exciting, (b)ittwthe same inputs and consensus, all parameter estimatesverge to the true value.

Parameter error vs. prediction error

extended to model-referenced adaptive control settinys, a
reinstantiated with all their associated robustness muodifi
cations €.g, o-mod., projection operations [10], [12]), as
well as robustness modifications to consensus itsetf, (Pl
control, periodic or sampled updates).

151

[PACA P

ACKNOWLEDGMENTS
0.5 agent 1

agent 2 We thank S. You, A. Swaminathan, and Y. Mo for helpful
agent 3 discussions. This work was supported by a Department of
o o5 1 15 2 25 3 35 Defense NDSEG Fellowship, and TerraSwarm, one of s_ix
' .|Ay'| ' ' centers of STARnet, a Semiconductor Research Corporation
! program sponsored by MARCO and DARPA.

Fig. 4. Prediction error (horizontal axis) tends to zerodbrthree agents
with (solid) and Withqut (dashed) consensus. Par_ameter eredtical axis) APPENDIX
also tends to zero with consensus due to collective PE.
Proof of Theorem 1 fop > 1. Form column vectory) =
(01,...,0,) € R™ and AQ = (Ady,...,Ad,) € R"™ by
stacking the componenf& cRP andAf;, =0, — 0 € RP

In this paper we showed that parameter consensus plays all : = 1,...,n. The dynamics (9) are now
an important role in generalizing persistence of excitatm d
the multi agent setting. Parameter convergence is governed —
by two main factors: the algebraic connectivity of the com- dt
munication graph and the level of collective persistence ofhere® is the Kronecker product,, € R?*? is the identity
excitation in the network. Our proof of asymptotic parametematrix, and® : [0, cc) — R"*"? is block diagonal,
convergence revealed the tension between these two factors T

o1(t)or(8)” - 0

VI. CONCLUSION

A = —(L & I,)A — vd(t) A0,

and that a certain kind of ergodicity can allow for parameter
to converge even in the absence of leaders in the network that o(t) = : . :
profess their own exciting input. The ideas can be readily 0 s () on ()T



The candidate Lyapunov function
L dTAg — LN AT A,
V(A9) = SA0TAY = > A6TAG;

i=1
has nonpositive derivative

V(A0) = —A0T (L ® I,) + (1)) Af < 0,

thus a loose uniform lower bound is

max{w” (L ® I,)w, ywT ®w} > a > 0.

A continuity argument should convince the reader that

a= inf max{)\z(l — Jlall3),

with V — 0 ast — oo by the same arguments as before,
thus parts 1-3 follow. For part 4, the mixed product property
AB®CD = (A®C)(B®D) for appropriately sized matrices is strictly positive. O

A, B, C, andD implies that the spectrum di® I, is related
to the spectrum of and, by

1
(L®Ip) (\/ﬁl ® ej) =0,
(L®Ip) (vi®ej) =i (v @ej),
foralli=2,...,nandj =1,...,p, wheree; € R? is the
jth unit vector. Write a unit vectow € R"? in this basis as

p 1 n p
w:;ajﬁlééej—i—;;&jvi@eﬁ

with (o, 3) € R? x R("~1P having unit norm. As before,
let ® be the average ob over [ty,t]. We wish to bound

max{w”’ (L @ I,)w, yw! dw}

(1]

(2]

(3]

(4]

(5]

(6]

uniformly below by a strictly positive constant. Using the

mixed product property anfie||3 + ||3]|3 = 1 we have

n p
wi (Lo L)w=> Y X\g
i=2 j=1

> Xa(1—[le3).
For the second term? ®w, note that
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