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A widely explored approach
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@ Abstraction results in high-dimensional systems — Scalability.
@ Seek an alternative: No explicit abstraction!
@ no free lunch: must resort to approximations
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Problem formulation

@ A dynamical system: x = f(x, u), x: state, u: input.
@ Performance measured by cost function

;
J(x, u) = /0 0(x, u)dt + G(x(T), u(T))

@ Labeling: Atomic propositions AP
@ Specifications in temporal logic: ¢ over AP.

@ Goal: Design a controller v : [0, T] — U such that the system
minimizes the cost while strictly satisfying .
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From LTL to Automaton

For a given formula ¢ (subset of LTL), the automaton is

A, =(Q,2%" 5, qo, F).

e Q= {q07 g1, 42, 43, Q4}
@ §: Qx 24" - Q (labeled directed edges).

@ qo: initial state
@ F: accepting states.

start =»
Ry o
)
(2 >(=)
Ry, Rs Ry, Rs T

Figure: ¢ = O(R1 A O(Rz2 A ORs)) AO-Obs.
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Co-safe LTL fragment

An LTL co-safety formula can be represented by a deterministic finite
state automaton,

p=qQoq --.qn is accepting if g, € F,
—_————

a finite good prefix

where F is the set of accepting states in A,.
@ can contain the X (next), ¢ (eventually), U (strong until).

@ negation only occurs in the front of atomic propositions.
Limited expressiveness:

@ Reachability: ¢goal.

@ Safety: —obs U goal.

@ Sequencing: ¢(goal; A O(goal, A Ogoaly)).

@ cannot specify fairness and recurrence properties.
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Approximate optimal control for co-safe LTL

Given a dynamical system
x = f(x,u)

Find u* that minimizes

.
J(Xp,U) = o (x,u)dt

subject to iy, by, . ..,

o(qi, x(t)) = q(tiy1),
i=0,1,...,k
qr € F,x(t) = xt.
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Approximate optimal control for co-safe LTL

Given a dynamical system

L(z) =

x = f(x,u)

Find u* that minimizes
T

J(Xp,U) = (x,u)dt
t=0
subject to 3y, 1y, ..., L(z) ={z € B}
ola; t)) = t: , O=to<t1 <---<ty=T
(C,"”_Xc() I:) Z( 1) L(z(t)) = L(z(t)) te <t < tta
IR L(z(t;)) # L= (1))

qr € F,x(t) = xt.

How do we develop a scalable control method that avoids

discretizing the state space?
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Approximate value function

Idea: The unknown value function can be arbitrarily closely
approximated by a linear combination of bases.

n
Va(x) = Vg(x) = Z Wi q®iq(X)
i=1
e.g. polynomial ¢g(x) : 1,x%,x3,.. ..
unknown value function—unknown
(finite many) parameters w;.
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Approximate optimal control

X
Va(x) — Vg (x) = s(q,q), 9" = (g, L(x)).

and boundary condition V4(x;) =0, Vqe F.

ovy;
min ( 5 9f(x, u) + £(x, u)) =0, Vg € Q, ¥x € Inv(q)
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Approximate optimal control

%f(x, u)+4(x,u)>0, vgeQ, Vxelnv(q), Yuel,

ox
Vo(x) = Vg (x) = s(q,4), q =d(q,L(x)).
and boundary condition

Vy(xs) = 0,vq e F.

Approximation V is a lower bound [cbc'1e] on the true value function,
i.e., qu(Xo) < VgO(Xo)
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Approximate optimal control

max Vo (X0)

%
subject to: aaxqf(x, u)+4(x,u) >0, YgeQ, Vxelnv(qg),

Qo = (qinit, L(x0)),
Vo(x) = V(%) = 8(a.4), 4 =d(q. L(x)).
V,y(xs) =0,vq e F.
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Approximate optimal control

Given w (weight parameter), and ¢4 (vector of basis functions),

max Wq, b0 (X0)

oW/ bq
ox

Qo = 3(Qinit, L(X0));

Wy dq(X) — Wy o (x) = 5(9,9), q =d(q,L(x)).

Wy dg(Xf) = 0,Vq € F.

subject to: f(x,u)+4(x,u) >0, VgeQ, Vxcelnv(q),

where Vq(x) = > i Wi q%iq(X) as the value function approximation.
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Approximate optimal control

@ LTI system with quadratically representable invariance regions
and guards = SDP [cbc'16] and SYDAR tool

pip install sydar

@ Nonlinear system: Semi-infinite program.

@ Existing algorithms [R Hettich, 1993] are inefficient with
non-differentiable objective functions.

Propose: An importance-sampling based search!
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Model Reference Adaptive Search

Our method is based on MRAS [Hu, Fu, & Marcus, 2007], @ general
sampling-based method for global optimization

x* € argmax,yH(x), X CR"

April 18-20, 2017 Fu et al. xviii



Model Reference Adaptive Search

Our method is based on MRAS [Hu, Fu, & Marcus, 2007], @ general
sampling-based method for global optimization

x* € argmax,yH(x), X CR"

@ Define a sequence of reference distributions {gx(-)} that
converges to a “Dirac” around x*, e.g.,

_ H(x)gk—1(x)
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9k(x) =12,...
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Model Reference Adaptive Search

Our method is based on MRAS [Hu, Fu, & Marcus, 2007], @ general
sampling-based method for global optimization

x* € argmax,yH(x), X CR"

@ Define a sequence of reference distributions {gx(-)} that
converges to a “Dirac” around x*, e.g.,

H(x)gk—1(x)
Sz HX")gk—1(X")v(ax’)’

9k(x) = =12,...

© Approximate the exact reference distributions {gk(-)} by a
parameterized family of distributions {p(-,0) | 6 € ©}.

© Generate a sequence of parameters {0k} by minimizing the KL
divergence between gk(-) and p(-, 6),

Dic (G P(-. 6 / In g" (x) (k).
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A simple/naive formulation

Add a terminal cost to penalize value/policy that does not satisfy the
temporal logic constraints.

minimize wJ(xo, U) +J x (1 — 1£(qr)).

@ Given V, derive u from the HJB—assuming that V is optimal.

utx,q) = argming 2 1, 0) + 10,0

V(x.q) = min { V(x.q)+s(x.q.9)},

Vx € Ge, Ve = (q,0,q') € E,q(t7) = o(q(t), L(x(t)))-

@ Approximate actor-critic NN fails with local optimality and
discontinuity in the value function!
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Sampling-based approximate optimal planning{@ WPI

Problem: randomly sampling weights that satisfy all the constraints
that are also optimal is a rare event.

Nominal Initial 0o Sampling
system
ol policy .
optimal policy P il

ae Adaptive
search for w* Converge 6*, w* ~ p(-,0%)

Figure: The overview of the proposed sampling-based optimal control for LTL
constraints.
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Learning from “bad” weights

@ A “bad” weight results in a policy that violates the constraints.
@ Difficulty with a good start.
Solution: Learning from the “bad” weights using guided search.
O(R1 A <>(R2 A\ <>R3)) A O-0bs.
y

AN

Ro
@ Red: satisfies partial spec.

@ Black: satisfies the spec but
not optimal.

Both provide information about
optimal policy.
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Learning from “bad” weights

Idea:
@ Instead of throwing away unsatisfying weights,
@ ... penalizes with a cost.
Rank-guided weighting of samples.
@ rank(q) = 0 for all final q.
Q rank(q) = mingco{rank(q’) + 1 | 3A € 247 5(q, A) = ¢'}.

-B

A state-dependent terminal cost:

F start =

0 forall g € c
rank(q) x ¢ otherwise. ¢ (=) g

h(a) = {

-B
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Idea:
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Example: Linear Quadratic control with LTL

For linear quadratic system, the optimal value function is polynomial.
Red polynomial basis ¢(x) = [x1 X2, X2, x3], for each g € Q.
The number of total weight vectors 15.

——x0=[05;-0.5]
- -x0=[05,05]

-B

>
o]

start —>|

Y

-B

Figure: Automaton A, for o1 = (A —
OB) A (C — OB) A (OAV OC).
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Example: Linear Quadratic control with LTL

The convergence of weight vectors (converge after 10-12 iterations.
Each iteration uses 100 samples.)

Mean of the multive
G Ao &

2000 2500
sample size
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Example: Dubins car optimal control with LTL {

Specification: Visit the target while avoiding the obstacles.
A mixture of bases:

@ Localized Radial Gaussian
basis:

—lx — x:112 . | | | |
(;S(X) = exp ( H 202X1|| > ) P

for pre-selected discrete
centers (in x-y coordinate) x;
and o.

@ Trigonometric functions:
cos(#), sin(0).
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Example: Dubins car optimal control: LTL co-

Specification: visit regions A, B, C in any order and avoid the
obstacles.

A mixture of bases:

@ Localized Radial Gaussian
basis:

P(x) = exp (_H 2;2XIH2>

for pre-selected discrete - _
centers (in x-y coordinate) x; I
and o. Ua

@ Trigonometric functions:
cos(#), sin(0).

ol (OBSTACLEY)
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Conclusion and future work

@ We proposed an importance sampling based approximate optimal
control algorithm under temporal logic constraints.

@ Introducing rank-guided policy search — similar to reward shaping
— to enable learning from bad samples.
Current and future work:
@ Feature selection: How to select a sparse set of basis function.

@ Good starting point matters: Value function relates to control
Lyapunov function for switched linear systems.
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